教育问题一直被人所重视,在注重小学生文化知识的同时别忘了科普法制教育知识。这里给大家整理了一些有关小学五年级数学下册教学计划,希望对大家有所帮助。读书之法,在循序而渐进,熟读而精思,本文是美丽的小编给家人们收集整理的数学五年级下册教案优秀5篇。
教学目标
1、通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征。
2、掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴。
3、培养和发展学生的实验操作能力,发现美和创造美的能力。
教学重难点
掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴。
教学工具
课件
教学过程
一、引入新课:
(1)欣赏下面的图形,并找出各个图形的对称轴。
(2)学生相互交流
你们还见过哪些轴对称图形?
(3)轴对称图形的概念:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
(4)通过例题探究轴对称图形的性质:
例题1:
同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。
学生交流
教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
二、课内练习。
1、判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。
三、教学画对称图形。
例题2:
(1)引导学生思考:
A、怎样画?先画什么?再画什么?
B、每条线段都应该画多长?
(2)在研究的基础上,让学生用铅笔试画。
(3)通过课件演示画的全过程,帮助学生纠正不足。
四、练习:
课内练习一-----第1、2题。
课后习题
完成课后练习题相关作业。
教学目标:
1.在观察、讨论、判断等活动中,经历初步认识扇形的过程。
2.知道扇形,初步了解扇形的特征,能在圆中画出扇形。
3.体会扇形和圆的关系,感受扇形图与名称的联系。,
教学重点:
认识扇形以及圆心角和弧。
教学难点:
认识扇形以及圆心角和弧。
教学准备:
教师准备两把折扇(其中一把圆形扇)、画有教材中四幅图的小黑板;学生准备水彩笔、量角器、直尺。
教学过程:
一、导入新课
师:(用折扇作为导入新课的道具)同学们对折扇并不陌生,能说说你们对它的认识吗?
像折扇打开形状(教师打开折扇演示)的平面图形,在数学上,我们称之为扇形。(出示课题:认识扇形)对扇形你想了解哪些知识呢?
学生自由讨论,指名交流汇报。
教师:同学们说的这些知识,我们今天一起来解决。
二、探究新知
师:请同学们仔细观察下图,圆中的涂色部分与圆有什么关系?
它们是圆的一部分,扇形是由圆心角的两条半径和圆心角所对的弧围成的图形。形象地说,就是两条线段和一段弧(曲线)围成了扇形。
1.认识圆心角。
出示例3图。
教师在右图的基础上标出1,指出:像1这样,顶点在圆心上的角叫作圆心角。
提问:圆心角是由什么组成的?顶点在什么上?
使学生认识到:圆心角是由两条半径和圆心组成的,所以圆心角的顶点在圆心上。
教师可以在黑板上画出几个角,让学生判断哪些是圆心角。
教师接着在黑板上画一个圆,在圆上分别画出圆心角是 、 、 、 的扇形,让学生比较这些扇形的大小。使学生明确:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形就越大。可以再次演示折扇,同一把扇子,张开程度不同,扇面的大小就不同。
2.认识弧。
教师拿出圆规和直尺,先画一个虚线圆,在圆上取A、B两点,再用实线A、B两点间的部分。(弧是圆上的一部分,这样处理易于理解)
师:请同学们观察一下,这两点间的实线部分是在什么上画出来的?
一、班级学生情况分析
全班共有学生52人,大部分学生对数学有上进心,但接受能力还有待提高,学习态度还需不断端正。有部分学生自觉性不够,不能及时完成作业等,对于学习数学有一定困难。所以在新的学期里,在端正学生学习态度的同时,应加强培养他们的各种学习数学的能力,以提高成绩。
二、教材分析
1、“简单的统计(一)”
2、“约数和倍数”部分的调整。
由于目前在实际教学中奎逊耐彩条的运用并不是很广泛,根据教学反馈的情况来看,用图解的方式也完全可以使学生理解分解质因数的原理,奎逊耐彩条在此的作用并不十分显著。因此,此次修订把利用奎逊耐彩条来分解质因数的有关内容删去了。但是在讲约数、倍数、公约数等内容时,仍保留奎逊耐彩条的形式,帮助学生借助直观进行理解。
3、“分数的意义和性质”部分的调整。
根据《大纲(试用修订版)》的要求,删去“分数的加法和减法”单元中的“分数、小数加减混合运算”。但是,我们认为分数和小数的互化仍是一个很重要的内容,需要让学生掌握,故把这部分内容移至本单元。
4、“分数的加法和减法”部分的调整。
(1)根据《大纲(试用修订版)》的要求,删去“同分母的带分数加、减法”、“异分母的带分数加、减法”、“分数、小数加减混合运算”三部分内容(“分数和小数的互化”移至上一单元),并对有关例题和练习题中的数据进行修改。
(2)删去“异分母分数加、减法”中的“连加、连减”内容及相关练习题。
5、增加“数学实践活动”。
高年级的数学实践活动逐步转向培养学生初步的课题研究能力。本册教材中的两个数学实践活动就很好地体现了这一点。
(1)你喜欢什么电视节目?
这个活动通过让学生了解周围的人喜欢什么电视节目,初步体会到用收集、整理信息的方式可以帮助我们了解某些具有倾向性的现象,例如,男生比女生更喜欢体育节目,家长比学生更喜欢新闻节目,等等。
在这个活动中,首先要使学生通过调查,提高收集信息的能力。其次,要让学生学会对收集到的信息进行整理,并从统计的结果中获得尽可能多的信息。第三,要让学生在讨论过程中提高数学交流的能力。
(2)数字与编码
这个活动主要由三部分组成。首先,让学生通过调查了解邮政编码的有关信息。其次,共同交流了解到的邮政编码及生活中其他数字编码的知识。最后,以小组合作的方式探讨给学校的每个学生编号的方法。
通过以上活动,学生可以进一步认识数学在生活中的广泛应用,提高收集、分析信息的能力。通过让学生探讨一种全新的编码规则,可以培养学生的实践能力、探索精神,以及简单的课题研究能力
三、教学目标
知识与技能
●经历收集、整理、描述和分析数据的过 程,掌握一些数据处理技能;体验事件发 生的等可能性、游戏规则的公平性,能计 算一些简单事件发生的可能性。
数学思考
●能对现实生活中有关的数字信息作出合理的解释,会用数、字母和图表描述并解决现实世界中的简单问题。
●在探索物体的位置关系、图形的特征、图形的变换以及设计图案的过程中,进一步发展空间观念。
●能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。
●在解决问题过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明。
解决问题
●能从现实生活中发现并提出简单的数学问题。
●能探索出解决问题的有效方法、并试图寻找其他方法。
●能借助计算器解决问题。
●在解决问题的活动中,初步学会与他人合作。
●能表达解决问题的过程,并尝试解释所得的结果。
●具有回顾与分析解决问题过程的意识。
四、教学措施
教师是学生数学活动的组织者、引导者与合作者。教师要积极利用各种教学资源,创造性地使用教材,设计适合学生发展的教学过程。要关注学生的个体差异,使每一个学生都有成功的学习体验,得到相应的发展;要因地制宜、合理有效地使用现代化教学手段,提高教学效益。
(一)让学生在现实情境中体验和理解数学
(二)鼓励学生独立思考,引导学生自主探索、合作交流
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动。教师要改变以例题、示范、讲解为主的教学方式,引导学生投入到探索与交流的学习活动之中。
(三)加强估算,鼓励解决问题策略的多样化
估算在日常生活与数学学习中有着十分广泛的应用,培养学生的估算意识,发展学生的估算能力,让学生拥有良好的数感,具有重要的价值。
(四)重视培养学生应用数学的意识和能力
本学段学生的知识、能力、情感和态度与第一学段的学生相比都有了进一步的发展,教师应该充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值。综合应用是培养学生主动探索与合作学习的重要途径,教师可以通过下面案例的教学过程,培养学生应用数学的意识和综合运用所学知识解决问题的能力。
教学目的:让学生通过统计活动,经历数据的收集、整理、描述和分析的过程,加深对不同统计量意义的理解,并且在活动中综合运用所学的知识和技能,感受到丢弃塑料袋的行为会对大自然造成污染,以唤起他们的环保意识。
五、教学进度表
单元教学内容
总课时
时间安排
一 简单的统计(一)
8
第一至第二周
二 长方体和正方体
15
第三至第五周
三 约数和倍数
17
第六至第十周
四 分数的意义和性质
20
第十一至第十四周
五 分数的加法和减法
10
第十五至第十七周
六 总复习
10
第十八至第十九周
教学目标:
1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。
3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。
教学重点:
探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:
自主探索,归纳概括分数的基本性质。
教具学具准备:
多媒体课件,正方形纸,彩笔。
教学设计:
一、创设情境,导入新课:
1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。
2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。
3.学生初步感知了什么变了而什么却没有变的概念。
4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。
二、探究新知。
(一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:
被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。
3.教师引导说出商不变的性质,课件出示商不变的性质的定义。
设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。
(二)、教学新知。
1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。
2.学生操作,教师巡视并特别提醒学生注意“平均分”。
3.展示学生的作业。
4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。
5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。
6.引导学生观察:
观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:
教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。
设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。
7.课件出示:(通知互相讨论)
(1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。
8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。
9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。
10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)
师:分数的基本性质和商不变性质的规律是一致的。
三、巩固强化,拓展应用。
(1)课件出示:(集体回答)。
(2)指出下列分数是否相等。(指名回答)。
(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。
(4)课件出示小故事。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的`原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)
设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。
四、回顾总结,梳理新知。
同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。
教学反思:
1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。
2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。
3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。
学习内容:
人教版小学数学五年级下册教材第12—13页。
学习目标:
1、我能理解因数与倍数的含义。
2、我会有序地思考,掌握了找一个数的因数的方法。
3、我知道一个数的因数的个数是有限的。
学习重点:
理解因数和倍数的含义,掌握求一个数的因数的方法。
学习难点:
能熟练地找一个数的因数。
教学过程:
一、导入新课
二、检查独学
1、互动分享收获。
2、质疑探讨。
三、合作探究
1、小组讨论:乘法算式中的因数和这里讲的因数一样吗?
(1)我的想法:________________________________
(2)小组代表交流、汇报。
(3)自读课本第12页下面的一段话。
2、自学课本第13页例1。思考:
(1)18的因数有________、________、________、________、________、________,共 有________个。
(2)18的最小因数是________,最大因数是________。它的因数的个数是________的。
(3)也可以这样表示: 18的因数
3、组内交流并讨论:怎样找最快,而且不容易遗漏?
我的想法:________________________________
4、小组代表汇报,总结。
5、试试身手(第13页“做一做”)。