作为一位优秀的老师,教学是重要的任务之一,借助教学反思我们可以快速提升自己的教学能力,如何把教学反思做到重点突出呢?下面是的小编为您带来的初中数学《等腰三角形》优秀教学设计(3篇),希望能够帮助到大家。
本人在等腰三角形性质(第三课时)的教学中,教学方法是采用“目标--问题”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。本着“问题是数学的心脏”原则,精心设计了一些问题,在教学过程中有半数的学生回答了教师的提问,但碍于教学计划,有的问题在答问过程中还不时得到本人的提醒,这样导致的结果是难于发现学生真实的思维过程。“多提问”固然有利于学生思考和理解知识,有利于了解学生掌握知识的程度。但在倡导培养创新精神和实践能力的今天,更要重视对学生问题意识的培养。问起于疑,疑源于思,课堂上教师要为学生质疑创造足够的空间和时间。目标--问题教学法的本质在于:在问题解决过程中培养学生问题意识和发现问题、提出问题的能力。令人遗憾的是本节课由于教学设计中留给学生的时间和空间偏少,导致学生发现问题、提出问题太少,长此以往的“后遗症”是学生问题意识的淡化。而在探索问题的关键时候,本人也缺乏耐心急于把思路给出,这是缺乏对学生的信任,学生将因此产生思维惰性。
教学永远是一门遗憾的艺术,吹尽黄沙始现金,我们只有以“没有最好,力求更好”来不断改进我们的教学,才能实现真正意义上的与时俱进。
知识结构:
重点与难点分析:
本节内容的重点是定理。本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点。推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论。
本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反。学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点。另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法。由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用。
教法建议:
本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:
(1)参与探索发现,领略知识形成过程
学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言。最后找一名学生用文字口述定理的内容。这样很自然就得到了定理。这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。
(2)采用“类比”的学习方法,获取知识。
由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。
(3)总结,形成知识结构
为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?
一。教学目标 :
1.使学生掌握定理及其推论;
2.掌握等腰三角形判定定理的运用;
3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;
4.通过自主学习的发展体验获取数学知识的感受;
5.通过知识的纵横迁移感受数学的辩证特征。
二。教学重点:定理
三。教学难点 :性质与判定的区别
四。教学用具:直尺,微机
五。教学方法:以学生为主体的讨论探索法
六。教学过程 :
1、新课背景知识复习
(1)请同学们说出互逆命题和互逆定理的概念
估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?
启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:
1.定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(简称“等角对等边”).
由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法。
已知:如图,△ABC中,∠B=∠C.
求证:AB=AC.
教师可引导学生分析:
联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形。因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起。再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.
注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆。
(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形。
(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系。
2.推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
要让学生自己推证这两条推论。
小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理。
证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.
3.应用举例
例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。
分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和。要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系。
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.
求证:AB=AC.
证明:(略)由学生板演即可。
补充例题:(投影展示)
1.已知:如图,AB=AD,∠B=∠D.
求证:CB=CD.
分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.
证明:连结BD,在 中, (已知)
(等边对等角)
(已知)
即
(等教对等边)
小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系。
2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.
分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论。
证明: DE//BC(已知)
,
BE=DE,同理DF=CF.
EF=DE-DF
EF=BE-CF
小结:
(1)等腰三角形判定定理及推论。
(2)等腰三角形和等边三角形的证法。
七。练习
教材 P.75中1、2、3.
八。作业
教材 P.83 中 1.1)、2)、3);2、3、4、5.
九。板书设计
14.3 课时安排4课时 从容说课 前面两节中,通过对生活中的轴对称现象的认识,进一步对轴对称的性质作了研究,还探讨了轴对称变换,能够作出一些简单的平面图形关于一条直线的对称图形,所以学生对这些结论已经有所了解。 本节在我们已学过的知识的基础上,进一步认识特殊的轴对称图形──等腰三角形,并探究等腰三角形的性质及等腰三角形的判定。在探究等腰三角形的相关问题时,再对等边三角形的相关内容进行深入探讨。 本节的重点是探索等腰三角形和等边三角形的性质及判定,并利用这些性质和判定求解相关的问题,进一步发展学生的数学思维。本节的重点同时也是本节的难点。教师在教学中,不可操之过急,应逐步引导,让学生去发现去探索这些性质,学生对它的理解要有一个过程,对它的应用也要慢慢去认识,并且在教学中要注意对学生数学思想的渗透以及分析问题、解决问题能力的培养。
§14.3.1.1 等腰三角形(一)第七课时 教学目标 (一)教学知识点 1.等腰三角形的概念。 2.等腰三角形的性质。 3.等腰三角形的概念及性质的应用。
1.经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点。
2.探索并掌握等腰三角形的性质。 (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯。 教学重点 1.等腰三角形的概念及性质。 2.等腰三角形性质的应用。 教学难点 等腰三角形三线合一的性质的理解及其应用。 教学方法 探究归纳法。 教具准备 师:多媒体课件、投影仪; 生:硬纸、剪刀。 教学过程 ⅰ.提出问题,创设情境 [师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?
[生]有的三角形是轴对称图形,有的三角形不是。
[师]那什么样的三角形是轴对称图形?
[生]满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。
[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。
ⅱ.导入新课
[师]同学们通过自己的思考来做一个等腰三角形。
作一条直线l,在l上取点a,在l外取点b,作出点b关于直线l的对称点c,连结ab、bc、ca,则可得到一个等腰三角形。
[生乙]在甲同学的做法中,a点可以取直线l上的任意一点。
[师]对,按这种方法我们可以得到一系列的等腰三角形。现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本p138探究中的方法,剪出一个等腰三角形。
……
[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。
[师]有了上述概念,同学们来想一想。
(演示课件)
1.等腰三角形是轴对称图形吗?请找出它的对称轴。
2.等腰三角形的两底角有什么关系?
3.顶角的平分线所在的直线是等腰三角形的对称轴吗?
4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
[生甲]等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。
[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。
[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等。
[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线。
[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴。
[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴。
[师]你们说的是同一条直线吗?大家来动手折叠、观察。
[生齐声]它们是同一条直线。
[师]很好。现在同学们来归纳等腰三角形的性质。
[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。 [师]很好,大家看屏幕。(演示课件) 等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”). 2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程) [生甲]如右图,在△abc中,ab=ac,作底边bc的中线ad,因为
所以△bad≌△cad(sss). 所以∠b=∠c. [生乙]如右图,在△abc中,ab=ac,作顶角∠bac的角平分线ad,因为 所以△bad≌△cad. 所以bd=cd,∠bda=∠cda= ∠bdc=90°. [师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范。下面我们来看大屏幕。(演示课件)[例1]如图,在△abc中,ab=ac,点d在ac上,且bd=bc=ad,求:△abc各角的度数。 [师]同学们先思考一下,我们再来分析这个题。[生]根据等边对等角的性质,我们可以得到∠a=∠abd,∠abc=∠c=∠bdc,再由∠bdc=∠a+∠abd,就可得到∠abc=∠c=∠bdc=2∠a.再由三角形内角和为180°,就可求出△abc的三个内角。 [师]这位同学分析得很好,对我们以前学过的定理也很熟悉。如果我们在解的过程中把∠a设为x的话,那么∠abc、∠c都可以用x来表示,这样过程就更简捷。 (课件演示) [例]因为ab=ac,bd=bc=ad, 所以∠abc=∠c=∠bdc. ∠a=∠abd(等边对等角). 设∠a=x,则 ∠bdc=∠a+∠abd=2x, 从而∠abc=∠c=∠bdc=2x. 于是在△abc中,有 ∠a+∠abc+∠c=x+2x+2x=180°, 解得x=36°. 在△abc中,∠a=35°,∠abc=∠c=72°.[师]下面我们通过练习来巩固这节课所学的知识。 ⅲ.随堂练习 (一)课本p141练习 1、2、3. 练习
1. 如下图,在下列等腰三角形中,分别求出它们的底角的度数。 答案:(1)72° (2)30°2. 如右图,△abc是等腰直角三角形(ab=ac,∠bac=90°),ad是底边bc上的高,标出∠b、∠c、∠bad、∠dac的度数,图中有哪些相等线段? 答案:∠b=∠c=∠bad=∠dac=45°;ab=ac,bd=dc=ad.3. 如右图,在△abc中,ab=ad=dc,∠bad=26°,求∠b和∠c的度数。 答:∠b=77°,∠c=38.5°.(二)阅读课本p138~p140,然后小结。 ⅳ.课时小结 这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用。等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。 ⅴ.课后作业 (一)课本p147─1、3、4、8题。 (二)1.预习课本p141~p143. 2.预习提纲:等腰三角形的判定。 ⅵ.活动与探究
如右图,在△abc中,过c作∠bac的平分线ad的垂线,垂足为d,de∥ab交ac于e.求证:ae=ce. 过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,等腰三角形的性质。 结果: 证明:延长cd交ab的延长线于p,如右图,在△adp和△adc中 ∴△adp≌△adc.∴∠p=∠acd. 又∵de∥ap, ∴∠4=∠p. ∴∠4=∠acd. ∴de=ec. 同理可证:ae=de. ∴ae=ce. 板书设计 §14.3.1.1 等腰三角形(一) 一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习 一、选择题 1.如果△abc是轴对称图形,则它的对称轴一定是( ) a.某一条边上的高; b.某一条边上的中线 c.平分一角和这个角对边的直线; d.某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) a.80° b.20° c.80°和20° d.80°或50° 答案:1.c 2.c二、已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm. 求这个等腰三角形的边长。解:设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得 2(x+2)+x=16. 解得x=4. 所以,等腰三角形的三边长为4cm、6cm和6cm.