最新高二数学必修五知识点归纳(优秀5篇)

相信有很多同学到了高中会认为数学是理科,所以没必要死记硬背。其实这是错误的想法,高中数学知识点众多,光靠一个脑袋是记不全的,好记性不如烂笔头,要想学好数学,同学们还是要多做知识点的总结。以下是人见人爱的小编分享的最新高二数学必修五知识点归纳(优秀5篇),希望能够帮助到大家。

高二数学必修五知识点 篇1

排列P------和顺序有关

组合C-------不牵涉到顺序的问题

排列分顺序,组合不分

例如把5本不同的书分给3个人,有几种分法。"排列"

把5本书分给3个人,有几种分法"组合"

1、排列及计算公式

从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示。

p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1)。

2、组合及计算公式

从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号

c(n,m)表示。

c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);

3、其他排列与组合公式

从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!。

n个元素被分成k类,每类的个数分别是n1,n2,。.。nk这n个元素的全排列数为

n!/(n1!_2!_.。_k!)。

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m)。

排列(Pnm(n为下标,m为上标))

Pnm=n×(n-1)。.。.(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

组合(Cnm(n为下标,m为上标))

Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

2008-07-0813:30

公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9________

从N倒数r个,表达式应该为n_n-1)_n-2)。.(n-r+1);

因为从n到(n-r+1)个数为n-(n-r+1)=r

举例:

Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9__个三位数。计算公式=P(3,9)=9__,(从9倒数3个的乘积)

Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?

A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9__/3__

排列、组合的概念和公式典型例题分析

例1设有3名学生和4个课外小组。(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加。各有多少种不同方法?

解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法。

(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法。

点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算。

例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?

解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:

∴符合题意的不同排法共有9种。

点评按照分“类”的思路,本题应用了加法原理。为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型。

例3判断下列问题是排列问题还是组合问题?并计算出结果。

(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?

(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?

(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?

(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?

分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题。其他类似分析。

(1)①是排列问题,共用了封信;②是组合问题,共需握手(次)。

(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法。

(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积。

(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法。

例4证明。

证明左式

右式。

∴等式成立。

点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化。

例5化简。

解法一原式

解法二原式

点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化。

例6解方程:(1);(2)。

解(1)原方程

解得。

(2)原方程可变为

∵,,

∴原方程可化为。

即,解得

高二数学必修五知识点 篇2

【不等关系及不等式】

一、不等关系及不等式知识点

1、不等式的定义

在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式。

2、比较两个实数的大小

两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba

3、不等式的性质

(1)对称性:ab

(2)传递性:ab,ba

(3)可加性:aa+cb+c,ab,ca+c

(4)可乘性:ab,cacb0,c0bd;

(5)可乘方:a0bn(nN,n

(6)可开方:a0

(nN,n2)。

注意:

一个技巧

作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方。

一种方法

待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围。

高二数学必修五知识点 篇3

1、等差数列通项公式

an=a1+(n-1)d

n=1时a1=S1

n≥2时an=Sn-Sn-1

an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b

2、等差中项

由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷2

3、前n项和

倒序相加法推导前n项和公式:

Sn=a1+a2+a3+·····+an

=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

Sn=an+an-1+an-2+······+a1

=an+(an-d)+(an-2d)+······+[an-(n-1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)

∴Sn=n(a1+an)÷2

等差数列的前n项和等于首末两项的和与项数乘积的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

4、等差数列性质

一、任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

二、从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N

_

三、若m,n,p,q∈N_且m+n=p+q,则有am+an=ap+aq

四、对任意的k∈N_有

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。

高二数学必修五知识点 篇4

(一)解三角形:

1、正弦定理:在中,、、分别为角、、的对边,,则有

(为的外接圆的半径)

2、正弦定理的变形公式:①,,;

②,,;③;

3、三角形面积公式:。

4、余弦定理:在中,有,推论:

高二数学必修五知识点 篇5

1、数列的函数理解:

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N_其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。

2、通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不)。

数列通项公式的特点:

(1)有些数列的通项公式可以有不同形式,即不。

(2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,。.。)。

3、递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。

数列递推公式特点:

(1)有些数列的递推公式可以有不同形式,即不。

(2)有些数列没有递推公式。

有递推公式不一定有通项公式。

注:数列中的项必须是数,它可以是实数,也可以是复数。

一键复制全文保存为WORD