高一物理教案必修一 高一物理必修一新教材教案优秀9篇

教案选择科学、恰当的教学方法,有利于教师科学、合理地支配课堂时间,更好地组织教学活动,提高教学质量,收到预期的教学效果。本页是小编醉清风给家人们找到的9篇高中物理必修一教案的相关文章,欢迎阅读,希望能够帮助到大家。

高一物理教案必修一 篇1

1、理解匀速直线运动,变速直线运动的概念

2、理解位移—时间图象的含义,知道匀速直线运动的位移图象及其意义。

3、理解用图象表示物理量之间的关系的数学方法。

重点:匀速直线运动的位移—时间图象。

难点:理解图象的意义。

(一)多媒体显示,引出匀速直线运动

1、观测一辆汽车在一段平直公路上运动

时间t/s 0 4.9 10.0 15.1 19.9

位移s/m 0 100 200 300 400

观测结果如下

可以看出,在误差允许的范围内,在相等的时间里汽车的位移相等。

2、物体在一条直线上运动,如果在相等的时间里位移相等,这种运动就叫做匀速直线运动。

(1)在匀速直线运动中,位移s跟发生这段位移所用的时间t成正比。

(2)用图象表示位移和时间的关系

在平面直角坐标系中

纵轴表示位移s

横轴表示时间t

作出上述汽车运动的s—t图象如右图所示

可见匀速直线运动的位移和时间的关系图象是一条倾斜直线

这种图象叫做位移—时间图象(s—t图象)

图象的含义

①表明在匀速直线运动中,s∝t

②图象上任一点的横坐标表示运动的时间,对应的纵坐标表示位移

③图象的斜率k=δs/δt=v

(3)学生阅读课文第23页方框里面的文字

讨论:下面的s—t图象表示物体作怎样的运动?(投影显示)

(二)变速直线运动

举例:(1)飞机起飞

(2)火车进站

2、物体在一条直线上运动,如果在相等的时间里位移不相等,这种运动就叫做变速直线运动。

3、变速直线运动的位移图象不是直线而是曲线(投影显示)

匀速直线运动(s ∝ t)

变速直线运动(s与t不成正比)

高一物理教案必修一 高一物理必修一新教材教案 篇2

一、教学目标

1、知道平抛运动的特点是:初速度�

2、理解平抛运动是匀变速运动,其加速度为g

3、理解平抛运动可以看作水平方向的匀速直线运动与竖直方向的自由落体运动的合运动,并且这两个运动互不影响。

4、会用平抛运动的规律解答有关问题。

二、重点难点

重点:平抛运动的特点和规律。

难点:对平抛运动的两个分运动的理解。

三、教学方法:

实验观察、推理归纳

四、教学用具:

平抛运动演示仪、多媒体及课件

五、教学过程

引入:粉笔头从桌面边缘水平飞出,观察粉笔头在空中做什么运动,这种运动具有什么特点,本节课我们就来学习这个问题。

(一)平抛运动

1、定义:将物体用一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动,叫做平抛运动。

举例:用力打一下桌上的小球,使它以一定的水平初速度离开桌面,小球所做的运动就是平抛运动,并且我们看见它做的是曲线运动。

分析:平抛运动为什么是曲线运动?(因为物体受到与速度方向成角度的重力作用)

2、平抛运动的特点

(1)从受力情况看:

竖直的重力与速度方向有夹角,作曲线运动。

b.水平方向不受外力作用,是匀速运动,速度为v0。

c. 竖直方向受重力作用,没有初速度,加速度为重力加速度g,是自由落体运动。

总结:做平抛运动的物体,在水平方向上由于不受力,将做匀速直线运动;在竖直方向上物体的初速度为0,且只受到重力作用,物体做自由落体运动。加速度等于g

(二)、实验验证:

【演示实验】用小锤打击弹性金属片时,a球向水平方向飞出,做平抛运动,而同时b球被松开,做自由落体运动。

现象: 越用力打击金属片,a球的水平速度也越大;无论a球的初速度多大,它总是与b球同时落地。

(2)、用课件模拟课本图5—16的实验。

结果分析:平抛运动在竖直方向上是自由落体运动,水平方向的速度大小

并不影响平抛物体在竖直方向上的运动。而水平分运动是匀速的,且不受竖直方向的运动的影响。

(3)、利用频闪照相更精细地研究平抛运动,其照片如课本图5—17所示

可以看出,两球在竖直方向上,经过相等的时间,落到相同的高度,即在竖直方向上都是自由落体运动;在水平方向上可以看出,通过相等的时间前进的距离相同,既水平分运动是匀速的。由此说明平抛运动的两个分运动是同时、独立进行的,竖直方向的运动与水平方向的运动互不影响。

(三)、平抛运动的规律

1、抛出后t 秒末的速度

以抛出点为坐标原点,水平方向为x轴(正方向和初速度v0的方向相同),竖直方向为y轴,正方向向下,则

水平分速度:vx=v0

竖直分速度:vy=gt

合速度:

2、平抛运动的物体在任一时刻t的位置坐标

以抛出点为坐标原点,水平方向为x轴(正方向和初速度v0的方向相同),竖直方向为y轴,正方向向下,则

水平位移:x=v0t

竖直位移:

合位移:

运用该公式我们可以求得物体在任意时刻的坐标并找到物体所在的位置,然后用平滑曲线把这些点连起来,就得到平抛运动的轨迹,这个轨迹是一条抛物线。

(四)例题分析

例1.如图(结合课件),树枝上的一只松鼠看到一个猎人正用枪对准它,为了逃脱即将来临的厄运,它想让自己落到地面上逃走。但是就在它掉离树枝的瞬间子弹恰好射出枪口,问松鼠能逃脱厄运吗?

答:不能。因子弹和松鼠在竖直方向都是自由落体运动,竖直方向的位移总是相同的,所以只要在子弹的射程内,就一定能射中松鼠,松鼠在劫难逃。

例2.一艘敌舰正以v1=12m/s的速度逃跑,飞机在320m高空以v2=105m/s的速度同向追击。为击中敌舰,应提前投弹。求飞机投弹时,沿水平方向它与敌舰之间的距离多大?若投弹后飞机仍以原速度飞行,在***击中敌舰时,飞机与敌舰的位置关系如何?

解:用多媒体模拟题目所述的物理情景

让学生对照课本上的例题解答——书写解题过程。

飞机投弹时,沿水平方向它与敌舰之间的距离位744m,由于飞机和***在水平方向的速度相等,所以在***击中敌舰时飞机在敌舰正上方。

(五)、课堂练习

1、讨论:练习三(1)(2)(3)

2、从高空水平方向飞行的飞机上,每隔1分钟投一包货物,则空中下落的许多包货物和飞机的连线是

a.倾斜直线 b.竖直直线 c.平滑曲线 d.抛物线

【b】

__3、平抛一物体,当抛出1秒后它的速度与水平方向成45o角,落地时速度方向与水平方向成60o角。( g取10 m/s2 )

(1)求物体的初速度;

(2)物体下落的高度。( 答案:v0=10m/s h=15m )

(五)、课堂小结

本节课我们学习了

1、什么是平抛运动

2、平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动

3、平抛运动的规律

六、课外作业:

高一物理教案必修一 篇3

教学目标 基本知识目标

1、知道力是物体间的相互作用,在具体问题中能够区分施力物体和受力物体;

2、知道力既有大小,又有方向,是一矢量,在解决具体问题时能够画出力的图示和力的示意图;

3、知道力的两种不同的分类;能力目标

通过本节课的学习,了解对某个力进行分析的线索和方法.情感目标

在讲解这部分内容时,要逐步深入,帮助学生在初中知识学习的基础上,适应高中物理的学习.

教学建议一、基本知识技能 1、理解力的概念:

力是物体对物体的作用,物体间力的作用是相互的.力不仅有大小还有方向,大 小、方向、作用点是力的三要素.

2、力的图示与力的示意图:

3、要会从性质和效果两个方面区分力.二、教学重点难点分析(一)、对于力是一个物体对另一个物体的作用,要准确把握这一概念,需要注意三点:

1、力的物质性(力不能脱离物体而存在);

2、力的相互性;

3、力的矢量性;

(二)、力的图示是本节的难点.

(三)、力的分类需要注意的是:

1、两种分类;

2、性质不同的力效果可以相同,效果相同的力性质可以不同.

教法建议:一、关于讲解“什么是力”的教法建议 力是普遍存在的,但力又是抽象的,力无法直接“看到”,只能通过力的效果间接地“看到”力的存在.有些情况下,力的效果也很难用眼直接观察到,只能凭我们去观察、分析力的效果才能认识力的存在.在讲解时,可以让学生注意身边的事情,想一下力的作用效果。对一些不易观察的力的作用效果,能否找到办法观察到.

二、关于讲解力的图示的教法建议 力的图示是物理学中的一种语言,是矢量的表示方法,能科学形象的对矢量进行表述,所以教学中要让学生很快的熟悉用图示的方法来表示物理的含义,并且能够熟练的应用.由于初始学习,对质点的概念并不是很清楚,在课堂上讲解有关概念时,除了要求将作用点画在力的实际作用点处,对于不确知力的作用点,可以用一个点代表物体,但不对学生说明“质点” 概念. 教学过程设计方案

一、提问:什么是力?

教师通过对初中内容复习、讨论的基础上,总结出力的概念:力是物体对物体的作用.

教师通过实验演示:如用弹簧拉动钩码,或者拍打桌子等实验现象展示力的效果以引导学生总结力的概念,并在此基础上指出力不能离开物体而独立存在.指出了力的物质性.

提问:下列实例,哪个物体对哪个物体施加了力?

(1)、马拉车,马对车的拉力.

(2)、桌子对课本的支持力.

总结出力的作用是相互的,有施力物体就有受力物体,有力作用,同时出现两个物体.

强调:在研究物体受力时,有时不一定指明施力物体,但施力物体一定存在.

二、提问、力是有大小的,力的大小用什么来测量?在国际单位制中,力的单位是什么?

教师总结:力的测量:力的测量用测力计.实验室里常用弹簧秤来测量力的大小.

力的单位:在国际单位制中,力的单位是牛顿,符号:n.

三、提问:仅仅用力的大小,能否确定一个力:

演示压缩、拉伸弹簧,演示推门的动作.主要引导学生说出力是有方向的,并在此基础上,让学生体会并得出力的三要素来。

高一物理教案必修一 篇4

一、教学目标

1。在机械能守恒定律的基础上,研究有重力、弹簧弹力以外其它力做功的情况,处理这类问题的。

2。对功和能及其关系的理解和认识是本章教学的重点内容,本节教学是本章教学内容的总结。通过本节教学使更加深入理解功和能的关系,明确物体机械能变化的规律,并能应用它处理有关问题。

3。通过本节教学,使学生能更加全面、深入认识功和能的关�

二、重点、难点分析

1。重点是使学生认识和理解物体机械能变化的规律,掌握应用这一规律解决问题的方法。在此基础上,深入理解和认识功和能的关系。

2。本节教学实质是渗透功能原理的观点,在教学中不必出现功能原理的名称。功能原理内容与动能定理的区别和联系是本节教学的难点,要解决这一难点问题,必须使学生对“功是能量转化的量度”的认识,从笼统、肤浅地了解深入到十分明确认识“某种形式能的变化,用什么力做功去量度”。

3。对功、能概念及其关系的认识和理解,不仅是本节、本章教学的重点和难点,也是物理教学的重点和难点之一。通过本节教学应使学生认识到,在今后的学习中还将不断对上述问题作进一步的分析和认识。

三、教具

投影仪、投影片等。

四、主要教学过程

(一)引入新课

结合机械能守恒定律引入新课。

提出问题:

1。机械能守恒定律的内容及物体机械能守恒的条件各是什么?

评价学生回答后,进一步提问引导学生思考。

2。如果有重力、弹簧弹力以外其它力对物体做功,物体的机械能如何变化?物体机械能的变化和哪些力做功有关呢?物体机械能变化的规律是什么呢?

教师提出问题之后引起学生的注意,并不要求学生回答。在此基础上教师明确指出:

机械能守恒是有条件的。大量现象表明,许多物体的机械能是不守恒的。例如从车站开出的车辆、起飞或降落的飞机、打入木块的子弹等等。

分析上述物体机械能不守恒的原因:从车站开出的车辆机械能增加,是由于牵引力(重力、弹力以外的力)对车辆做正功;射入木块后子弹的机械能减少,是由于阻力对子弹做负功。

重力和弹力以外的其它力对物体做功和物体机械能变化有什么关系,是本节要研究的中心问题。

(二)教学过程设计

提出问题:下面我们根据已掌握的动能定理和有关机械能的知识,分析物体机械能变化的规律。

1。物体机械能的变化

问题:质量m的小滑块受平行斜面向上拉力f作用,沿斜面从高度h1上升到高度h2处,其速度由v1增大到v2,如图所示,分析此过程中滑块机械能的变化与各力做功的关系。

引导学生根据动能定理进一步分析、探讨小滑块机械能变化与做功的关系。归纳学生分析,明确:

选取斜面底端所在平面为参考平面。根据动能定理∑w=δek,有

由几何关系,有sinθl=h2-h1

即fl-fl=e2-e1=δe

引导学生理解上式的物理意义。在学生回答的基础上教师明确指出:

(1)有重力、弹簧弹力以外的其它力对物体做功,是使物体机械能发生变化的原因;

(2)重力和弹簧弹力以外其它力对物体所做功的代数和,等于物体机械能的变化量。这是物体机械能变化所遵循的基本规律。

2。对物体机械能变化规律的进一步认识

(1)物体机械能变化规律可以用公式表示为w外=e2-e1或w外=δe

其中w外表示除重力、弹簧弹力以外其它力做功的代数和,e1、e2分别表示物体初、末状态的机械能,δe表示物体机械能变化量。

(2)对w外=e2-e1进一步分析可知:

(i)当w外>0时,e2>e1,物体机械能增加;当w外<0时,e2

(ii)若w外=0,则e2=e1,即物体机械能守恒。由此可以看出,w外=e2-e1是包含了机械能守恒定律在内的、更加普遍的功和能关系的表达式。

(3)重力、弹簧弹力以外其它力做功的过程,其实质是其它形式的能与机械能相互转化的过程。

例1。质量4。0×103kg的汽车开上一山坡。汽车沿山坡每前进100m,其高度升高2m。上坡时汽车速度为5m/s,沿山坡行驶500m后速度变为10m/s。已知车行驶中所受阻力大小是车重的0。01倍,试求:(1)此过程中汽车所受牵引力做功多少?(2)汽车所受平均牵引力多大?取g=10m/s2。本题要求用物体机械能变化规律求解。

引导学生思考与分析:

(1)如何依据w外=e2-e1求解本题?应用该规律求解问题时应注意哪些问题?

(2)用w外=e2-e1求解本题,与应用动能定理∑w=ek2-ek1有什么区别?

归纳学生分析的结果,教师明确给出例题求解的主要过程:

取汽车开始时所在位置为参考平面,应用物体机械能变化规律w外=e2-e1解题时,要着重分析清楚重力、弹力以外其它力对物体所做的功,以及此过程中物体机械能的变化。这既是应用此规律解题的基本要求,也是与应用动能定理解题的重要区别。

例2。将一个小物体以100j的初动能从地面竖直向上抛出。物体向上运动经过某一位置p时,它的动能减少了80j,此时其重力势能增加了60j。已知物体在运动中所受空气阻力大小不变,求小物体返回地面时动能多大?

引导学生分析思考:

(1)运动过程中(包括上升和下落),什么力对小物体做功?做正功还是做负功?能否知道这些力对物体所做功的比例关系?

(2)小物体动能、重力势能以及机械能变化的关系如何?每一种形式能量的变化,应该用什么力所做的功量度?

归纳学生分析的结果,教师明确指出:

(1)运动过程中重力和阻力对小物体做功。

(2)小物体动能变化用重力、阻力做功的代数和量度;重力势能的变化用重力做功量度;机械能的变化用阻力做功量度。

(3)由于重力和阻力大小不变,在某一过程中各力做功的比例关系可以通过相应能量的变化求出。

(4)根据物体的机械能e=ek+ep,可以知道经过p点时,物体动能变化量大小δek=80j,机械能变化量大小δe=20j。

例题求解主要过程:

上升到最高点时,物体机械能损失量为

由于物体所受阻力大小不变,下落过程中物体损失的机械能与上升过程相同,因此下落返回地面时,物体的动能大小为

e′k=ek0-2δe′=50j

本例题小结:

通过本例题分析,应该对功和能量变化有更具体的认识,同时应注意学习综合运用动能定理和物体机械能变化规律解决问题的方法。

思考题(留给学生课后练习):

(1)运动中物体所受阻力是其重力的几分之几?

(2)物体经过p点后还能上升多高?是前一段高度的几分之几?

五、小结

本小结既是本节课的第3项内容,也是本章的小结。

3。功和能

(1)功和能是不同的物理量。能是表征物理运动状态的物理量,物体运动状态发生变化,物体运动形式发生变化,物体的能都相应随之变化;做功是使物体能量发生变化的一种方式,物体能量的变化可以用相应的力做功量度。

(2)力对物体做功使物体能量发生变化,不能理解为功变成能,而是通过力做功的过程,使物体之间发生能量的传递与转化。

(3)力做功可以使物体间发生能的传递与转化,但能的总量是保持不变的。自然界中,物体的能量在传递、转化过程中总是遵循能量守恒这一基本规律的。

六、说明

本节内容的处理应根据学生具体情况而定,学生基础较好,可介绍较多内容;学生基础较差,不一定要求应用物体机械能变化规律解题,只需对功和能关系有初步了解即可。

高一物理教案必修一 篇5

1.知道功率是表示做功快慢的物理量。

2.理解功率的概念,能运用功率的公式p=w /t进行有关计算。

3.正确理解公式p=fvcosα的意义,知道什么是瞬时功率,什么是平均功率,并能用来解释现象和进行计算。

1.理解功率的概念是本节的重点。

2.瞬时功率和平均功率计算是本节的难点。

3.机车起动问题是本节课对学生的一个能力培养点。

讲授、讨论、练习。

引入新课:上节课学习了功的概念及其计算。现在我们研究下面两个问题。

(1)质量为2kg的物体在4n的水平拉力f1作用下沿f1的方向以2 m/s的速度匀速前进16m.在此过程中,有几个力对物体做功,各做功多少?此过程用多长时间?

(2)质量为2kg的物体静止在光滑水平面上,在f2=4n的水平拉力作用下前进16 m。在此过程中,有几个力对物体做功?各做功多少?此过程用多长时间?(学生自己解答,教师小结。)

中拉力做功:w11=f1s=64j;阻力做功:w12=-f1s=-64j;时间:t1=s/v=8s.

可见,力对物体做功多少,只由f、s及它们间夹角决定,与物体是否还受其它力、物体是匀速运动还是变速运动无关。再比较一下,f1、f2做功一样多,但所用时间不同。说明力对物体做功还有一个快慢问题。本节课学习做功快慢的描述问题。

板书课题:

功率

进行新课:

(一)力对物体做功快慢的比较。

分析以下事例,归纳出做功快慢的比较方法:

运动的。快慢用表示;速度变化快慢用表示,我们把描述力做功快慢的物理量定义为功率,这是物理学中的一个重要概念。

(二)功率的概念

1.定义:功跟完成这些功所用时间的比值叫做功率。定义式:p=w/t

2.单位:国际单位为瓦(w),常用“千瓦”(kw)作功率单位。 1w=1j/s,1kw=1000w。

3.功率的物理意义:功率是描述力对物体做功快慢的物理量

功率大的做功快。不论在什么条件下,只要明确了功w和所用时间t,就可求出相应的功率。以上几个功率就是钢绳拉力对重物做功的功率,a起重机的功率pa=8kw,b起重机的功率pb=12kw,c起重机的功率pc=32kw。c做功最快,a做功最慢。

4.功率是标量。由于功有正负,相应的功率也有正负。功率的正负不表示大小,只表示做功的性质,即动力的功率为正,阻力的功率为负,计算时不带符号,只计绝对值。

根据w=fscosα和v=s/ t,可得p=fvcosα。若f、s同向,可简化为p=fv。

5.功率的另一表达式:p=fvcosα f--对物体做功的力v--物体运动的速度a--f与v的夹角。

(三)平均功率和瞬时功率

1.平均功率:描述力在一段时间内做功的快慢,用p=w/t计算,若用p=fvcosα,v为t时间内的平均速度。平均功率是针对一段时间或一个过程而言的,因此在计算平均功率时一定要弄清是哪段时间或哪一个过程的平均功率。

2.瞬时功率:描述力在某一时刻做功的快慢,只能用p=fvcosα,v--某时刻的速度。瞬时功率是针对某时刻或某位置的,因此在计算瞬时功率时一定要弄清是哪个时刻或哪个位置的功率。

例题1:已知质量为m的物体从高处自由下落,经时间t,在t时间内重力对物体做功的平均功率为;在t时刻重力对物体做功的瞬时功率为。

解析:在t内,物体下落的高度h = ,重力对物体所做的功w= ,所以在t内重力做功的平均功率为;在t时刻重力做功的瞬时功率为。

3.对公式p=fv的讨论。

(1)当功率p一定时,即做功的力越大,其速度就越小。当汽车发动机功率一定时,要增大牵引力,就要减小速度。故汽车上坡时,用换挡的办法减小速度来得到较大的牵引力。

(2)当速度v一定时,即做功的力越大,它的功率也越大。汽车从平路到上坡,若要保持速度不变,必须加大油门,增大发动机功率来得到较大的牵引力。

(3)当力f一定时,即速度越大,功率越大。起重机吊同一物体以不同速度匀速上升,输出功率不等,速度越大,起重机输出功率越大。

例题2:飞机、轮船运动时受到的阻力并不恒定,当速度很大时,阻力和速度的平方成正比,这时要把飞机、轮船的速度增大到原来的2倍,发动机的输出功率要增大到原来的:

a.2倍;b.4倍;c. 6倍;d. 8倍。

解析:飞机、轮船达到速度时牵引力f与阻力f相等,即f=f,而f=kv2,所以发动机的输出功率p=fv=kv3,要把速度增大到原来的2倍,发动机的输出功率要增大到原来的8倍。

(四)额定功率和实际功率

额定功率指机器正常工作时的输出功率,也就是机器铭牌上的标称值。实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。

高一物理教案必修一 篇6

一、教学目标

1、 理解自由落体运动,知道它是初速度为零的匀加速直线运动

2、明确物体做自由落体运动的条件

3、理解重力加速度概念,知道它的大小和方向,知道在地球上不同的地方,重力加速度的大小是不同的

4、培养学生实验、观察、推理、归纳的科学意识和方法

5、通过对伽利略自由落体运动研究的学习,培养学生抽象思维能力,并感受先辈大师崇尚科学、勇于探索的人格魅力

二、重点难点

理解在同一地点,一切物体在自由落体运动中的加速度都相同是 本节的重点

掌握并灵活运用自由落体运动规律解决实际问题是难点

三、教学方法

实验—观察—分析—总结

四、教具

牛顿管、抽气机、电火花计时器、纸带、重锤、学生电源、铁架台

五、教学过程

(一)、课前提问:初速为零的匀加速直线运动的规律是怎样的?

vt=at

s =at2/2

vt2 =2as

(二)、自由落体运动

演示1:左手掷一金属片,右手掷一张纸片,在讲台上方从同一高度由静止开始同时释放,让学生观察二者是否同时落地。然后将纸片捏成纸团,重复实验 ,再观察二者是否同时落地。

结论:第一次金属片先落下,纸片后落下,第二次几乎同时落下。

提问:解释观察的现象

显然,空气对纸的阻力影响了纸片的下落,而当它被撮成纸团以后,阻力减小,纸片和金属片才几乎同时着地。

假设纸片和金属片处在真空中同时从同一高度下落,会不会同时着地呢?

演示2:牛顿管实验

自由落体运动:物体只在重力作用下从静止开始下落的运动,叫做自由落体运动。

显然物体做自由落体运动的条件是:

(1)只受重力而不受其他任何力,包括空气阻力。

(2) 从静止开始下落

实际上如果空气阻力的作用同重力相比很小,可以忽略不计,物体的下落也可以看做自由落体运动。

(三)自由落体运动是怎样的直线运动呢?

学生分组实验(每二人一组)

将电火花计时器呈竖直方向固定在铁架台上,让纸带穿过计时器,纸带下方固定在重锤上,先用手提着纸带,使重物静止在靠近计时器下放,然后接通电源,松开纸带,让重物自由下落,计时器就在纸带上打下一系列小点。

运用该纸带分析重锤的运动,可得到:

1、自由落体运动是初速度为零的匀加速直线运动

2、重锤下落的加速度为a=9。8m/s2

(四)自由落体加速度

1、学生阅读课文

提问:什么是重力加速度?标准值为多少?方向指向哪里?用什么字母表示?(略)

2、重力加速度的大小有什么规律?

(1)在地球上同一地点,一切物体的重力加速度都相同。

(2)在地球上不同的地方,重力加速度是不同的,由教材第37页表格可知,纬度愈高,数值愈大。

(3)在通常的计算中,可以把g取作9。8m/s2,在粗略的计算中,还可以把g取作10m/s2

(五)自由落体运动的规律

vt=gt

h=(1/2)gt2 g取9。8m/s2

vt2=2gh

注意式中的h是指下落的高度

(六)课外作业

1、阅读《伽利略对自由落体运动的研究》

2、教材第38页练习八(1)至(4)题

高一物理教案必修一 篇7

一、应用解法分析动态问题

所谓解法就是通过平行四边形的邻边和对角线长短的关系或变化情况,作一些较为复杂的定性分析,从形上就可以看出结果,得出结论。

例1 用细绳ao、bo悬挂一重物,bo水平,o为半圆形支架的圆心,悬点a和b在支架上。悬点a固定不动,将悬点b从1所示位置逐渐移到c点的过程中,试分析oa绳和ob绳中的拉力变化情况。

[方法归纳]

解决动态问题的一般步骤:

(1)进行受力分析

对物体进行受力分析,一般情况下物体只受三个力:一个是恒力,大小方向均不变;另外两个是变力,一个是方向不变的力,另一个是方向改变的力。在这一步骤中要明确这些力。

(2)画三力平衡

由三力平衡知识可知,其中两个变力的合力必与恒力等大反向,因此先画出与恒力等大反向的力,再以此力为对角线,以两变力为邻边作出平行四边形。若采用力的分解法,则是将恒力按其作用效果分解,作出平行四边形。

(3)分析变化情况

分析方向变化的力在哪个空间内变化,借助平行四边形定则,判断各力变化情况。

变式训练1 如2所示,一定质量的物块用两根轻绳悬在空中,其中绳oa固定不动,绳ob在竖直平面内由水平方向向上转动,则在绳ob由水平转至竖直的过程中,绳ob的张力的大小将( )

a.一直变大

b.一直变小

c.先变大后变小

d.先变小后变大

二、力的正交分解法

1.概念:将物体受到的所有力沿已选定的两个相互垂直的方向分解的方法,是处理相对复杂的多力的合成与分解的常用方法。

2.目的:将力的合成化简为同向、反向或垂直方向的分力,便于运用普通代数运算公式解决矢量的运算,“分解”的目的是为了更好地“合成”。

3.适用情况:适用于计算三个或三个以上力的合成。

4.步骤

(1)建立坐标系:以共点力的作用点为坐标原点,直角坐标系x轴和y轴的选择应使尽量多的力在坐标轴上。

(2)正交分解各力:将每一个不在坐标轴上的力分解到x轴和y轴上,并求出各分力的大小,如3所示。

(3)分别求出x轴、y轴上各分力的矢量和,即:

fx=f1x+f2x+…

fy=f1y+f2y+…

(4)求共点力的合力:合力大小f=f2x+f2y,合力的方向与x轴的夹角为α,则tan α=fyfx,即α=arctan fyfx.

4

例2 如4所示,在同一平面内有三个共点力,它们之间的夹角都是120°,大小分别为f1=20 n,f2=30 n,f3=40 n,求这三个力的合力f.

5

变式训练2 如5所示,质量为m的木块在推力f的作用下,在水平地面上做匀速运动。已知木块与地面间的动摩擦因数为μ,那么木块受到的滑动摩擦力为( )

a.μmg

b.μ(mg+fsin θ)

c.μ(mg-fsin θ)

θ

三、力的分解的实际应用

例3 压榨机结构如6所示,b为固定铰链,a为活动铰链,若在a处施另一水平力f,轻质活塞c就以比f大得多的力压d,若bc间距为2l,ac水平距离为h,c与左壁接触处光滑,则d所受的压力为多大?

例4 如7所示,是木工用凿子工作时的截面示意,三角形abc为直角三角形,∠c=30°.用大小为f=100 n的力垂直作用于mn,mn与ab平行。忽略凿子的重力,求这时凿子推开木料ac面和bc面的力分别为多大?

变式训练3 光滑小球放在两板间,如8所示,当oa板绕o点转动使 θ角变小时,两板对球的压力fa和fb的变化为( )

变大,fb不变

和fb都变大

变大,fb变小

变小,fb变大

例5 如9所示,在c点系住一重物p,细绳两端a、b分别固定在墙上,使ac保持水平,bc与水平方向成30°角。已知细绳最大只能承受200 n的拉力,那么c点悬挂物体的重量最

多为多少,这时细绳的哪一段即将被拉断?

参考答案

解题方法探究

例1 见解析

解析 在支架上选取三个点b1、b2、b3,当悬点b分别移动到b1、b2、b3各点时,ao、bo中的拉力分别为fta1、fta2、fta3、和ftb1、ftb2、ftb3,从中可以直观地看出,fta逐渐变小,且方向不变;而ftb先变小,后变大,且方向不断改变;当ftb与fta垂直时,ftb最小。

变式训练1 d

例2 f=103 n,方向与x轴负向的夹角为30°

解析 以o点为坐标原点,建立直角坐标系xoy,使ox方向沿力f1的方向,则f2与y轴正向间夹角α=30°,f3与y轴负向夹角β=30°,如甲所示。

先把这三个力分解到x轴和y轴上,再求它们在x轴、y轴上的分力之和。

fx=f1x+f2x+f3x

=f1-f2sin α-f3sin β

=20 n-30sin 30° n-40sin 30° n=-15 n

fy=f1y+f2y+f3y

=0+f2cos α-f3cos β

=30cos 30° n-40cos 30° n=-53 n

这样,原来的三个力就变成互相垂直的两个力,如乙所示,最终的合力为:

f=f2x+f2y=-152+-532 n=103 n

设合力f与x轴负向的夹角为θ,则tan θ=fyfx=-53 n-15 n=33,所以θ=30°.

变式训练2 bd

例3 l2hf

解析 水平力f有沿ab和ac两个效果,作出力f的分解如甲所示,f′=h2+l22hf,由于夹角θ很大,力f产生的沿ab、ac方向的效果力比力f大;而f′又产生两个作用效果,沿水平方向和竖直方向,如乙所示。

甲 乙

fy=lh2+l2f′=l2hf.

例4 1003 n 200 n

解析 弹力垂直于接触面,将力f按作用效果进行分解如所示,由几何关系易得,推开ac面的力为f1=f/tan 30°=1003 n.

推开bc面的力为f2=f/sin 30°=200 n.

变式训练3 b [利用三力平衡判断如下所示。

当θ角变小时,fa、fb分别变为fa′、fb′,都变大。]

例5 100 n bc段先断

解析 方法一 力的合成法

根据一个物体受三个力作用处于平衡状态,则三个力的任意两个力的合力大小等于第三个力大小,方向与第三个力方向相反,在甲中可得出f1和f2的合力f合竖直向上,大小等于f,由三角函数关系可得出f合=f1sin 30°,f2=f1cos 30°,且f合=f=g.

设f1达到最大值200 n,可得g=100 n,f2=173 n.

由此可看出bc绳的张力达到最大时,ac绳的张力还没有达到最大值,在该条件下,bc段绳子即将断裂。

设f2达到最大值200 n,可得g=115.5 n,f1=231 n>200 n.

由此可看出ac绳的张力达到最大时,bc绳的张力已经超过其最大能承受的力。在该条件下,bc段绳子早已断裂。

从以上分析可知,c点悬挂物体的重量最多为100 n,这时细绳的bc段即将被拉断。

方法二 正交分解法

如乙所示,将拉力f1按水平方向(x轴)和竖直方向(y轴)两个方向进行正交分解。由力的平衡条件可得f1sin 30°=f=g,f1cos 30°=f2.

f1>f2;绳bc先断, f1=200 n.

可得:f2=173 n,g=100 n.

高一物理教案必修一 高一物理必修一新教材教案 篇8

教学目标:

1、知道什么是曲线运动;

2、知道曲线运动中速度的方向是怎样确定的;

3、知道物体做曲线运动的条件。

教学重点:

1、什么是曲线运动

2、物体做曲线运动的方向的确定

3、物体做曲线运动的条件

教学难点:

物体做曲线运动的条件

教学时间:

1课时

教学步骤:

一、导入新课:

前边几章我们研究了直线运动,下边同学们思考两个问题:

1、什么是直线运动?

2、物体做直线运动的条件是什么?

在实际生活中,普遍发生的是曲线运动,那么什么是曲线运动?本节课我们就来学习这个问题。

二、新课教学

1、曲线运动

(1)几种物体所做的运动

a:导弹所做的运动;汽车转弯时所做的运动;人造卫星绕地球的运动;

b:归纳总结得到:物体的运动轨迹是曲线。

(2)提问:上述运动和曲线运动除了轨迹不同外,还有什么区别呢?

(3)对比小车在平直的公路上行驶和弯道上行驶的情况。

学生总结得到:曲线运动中速度方向是时刻改变的。

过渡:怎样确定做曲线运动的物体在任意时刻的速度方向呢?

2:曲线运动的速度方向

(1)情景:

a:在砂轮上磨刀具时,刀具与砂轮接触处有火星沿砂轮的切线方向飞出;

b:撑开的带着水的伞绕伞柄旋转,伞面上的水滴沿伞边各点所划圆周的切线方向飞出。

(2)分析总结得到:质点在某一点(或某一时刻)的速度的方向是在曲线的这一点的切线方向。

(3)推理:

a:只要速度的大小、方向的一个或两个同时变化,就表示速度矢量发生了变化。

b:由于做曲线运动的物体,速度方向时刻改变,所以曲线运动是变速运动。

过渡:那么物体在什么条件下才做曲线运动呢?

3:物体做曲线运动的条件

(1)一个在水平面上做直线运动的钢珠,如果从旁给它施加一个侧向力,它的运动方向就会改变,不断给钢珠施加侧向力,或者在钢珠运动的路线旁放一块磁铁,钢珠就偏离原来的方向而做曲线运动。

(2)观察完模拟实验后,学生做实验。

(3)分析归纳得到:当物体所受的合力的方向跟它的速度方向不在同一直线时,物体就做曲线运动。

(4)学生举例说明:物体为什么做曲线运动。

(5)用牛顿第二定律分析物体做曲线运动的条件:

当合力的方向与物体的速度方向在同一直线上时,产生的加速度也在这条直线上,物体就做直线运动。

如果合力的方向跟速度方向不在同一条直线上时,产生的加速度就和速度成一夹角,这时,合力就不但可以改变速度的大小,而且可以改变速度的方向,物体就做曲线运动。

三、巩固训练:

四、小结

1、运动轨迹是曲线的运动叫曲线运动。

2、曲线运动中速度的方向是时刻改变的,质点在某一点的瞬时速度的方向在曲线的这一点的切线上。

3、当合外力f的方向与它的速度方向有一夹角a时,物体做曲线运动。

五、作业:<创新设计>曲线运动 课后练习

高一物理教案必修一 高一物理必修一新教材教案 篇9

知识目标

通过学习物理学史的知识,使学生了解地心说(托勒密)和日心说(哥白尼)分别以不同的参照物观察天体运动的观点;通过学习开普勒对行星运动的描述,了解牛顿是通过总结前人的经验的基础上提出了万有引力定律。

能力目标

通过学生的阅读使学生知道开普勒对行星运动的描述;

情感目标

使学生在了解地心说和日心说两种不同的观点,也使学生懂得科学的道路并不是平坦的光明大道,也是要通过斗争,甚至会付出生命的代价;

说明:

1、日心、地心学说及两者之间的争论有许多内容可向学生介绍,教材为了简单明了地简述开普勒关于行星运动的规律,没有过多地叙述这些内容。教学中可根据学生的实际情况加以补充。

2、这一节的教学除向学生介绍日心、地心学说之争外,还要注意向学生说明古时候人们总是认为天体做匀速圆周运动是由于它遵循的运动规律与地面上物体运动的规律不同。

3.学习这一节的主要目的是为了下一节推导万有引力定律做铺垫,因此教材中没有过重地讲述开普勒的三大定律,而是将三大定律的内容综合在一起加以说明,节后也没有安排练习。希望老师能合理地安排这一节的教学。

教学建议

教材分析

本节教材首先让学生在上课前准备大量的资料并进行阅读,如:第谷在1572年时发现在仙后座中有一颗很亮的新星,从此连续十几个月观察这颗星从明亮到消失的过程,并用仪器定位确证是恒星(后称第谷星,是银河系一颗超新星),打破了历来“恒星不变”的学说。伽利略开创了以实验事实为基础并具有严密逻辑体系和数学表述形式的近代科学。为__以亚里士多德为旗号的经院哲学对科学的禁锢、改变与加深人类对物质运动和宇宙的科学认识而奋斗了一生,因此被誉为“近代科学之父”。开普勒幼年时期的不幸,通过自身不懈的努力完成了第谷未完成的工作。这些物理学家的有关资料可以帮助学生在了解万有引力定律发现的过程中体会科学家们追求真理、实事求是、不畏强权的精神。

教法建议

具体授课中教师可以用故事的形式讲述。也可通过放资料片和图片的形式讲述。也可大胆的让学生进行发言。

在讲授“日心说”和“地心说”时,先不要否定“地心说”,让学生了解托勒密巧妙的解释,同时让学生明白哥白尼的理论__了统治人类长达一千余年的地球是宇宙中心的“地心说”理论,为宣传和捍卫这一学说,意大利的思想家布鲁诺惨遭烧死,伽利略也为此受到残酷迫害。不必给结论,让学生自行得出结论。

典型例题

关于开普勒的三大定律

例1月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天。应用开普勒定律计算:在赤道平面内离地面多少高度,人造地球卫星可以随地球一起转动,就像停留在无空中不动一样。

分析:月球和人造地球卫星都在环绕地球运动,根据开普勒第三定律,它们运行轨道的半径的三次方跟圆周运动周期的二次方的比值都是相等的。

解:设人造地球卫星运行半径为r,周期为t,根据开普勒第三定律有:

同理设月球轨道半径为,周期为,也有:

由以上两式可得:

在赤道平面内离地面高度:

km

点评:随地球一起转动,就好像停留在天空中的卫星,通常称之为定点卫星。它们离地面的高度是一个确定的值,不能随意变动。

利用月相求解月球公转周期

例2若近 又知这两种转动同向,如图所示,月相变化的周期为29.5天(图是相继两次满月,月、地、日相对位置示意图).

解:月球公转(2π+)用了29.5天。故转过2π只用天。

由地球公转知。

所以=27.3天。

例3如图所示,a、b、c是在地球大气层外的圆形轨道上运行的三颗人造地球卫星,下列说法中正确的是哪个?()

a.b、c的线速度相等,且大于a的线速度

b.b、c的周期相等,且大于a的周期

c.b、c的向心加速度相等,且大于a的向心加速度

d.若c的速率增大可追上同一轨道上的b

分析:由卫星线速度公式可以判断出,因而选项a是错误的。

由卫星运行周期公式,可以判断出,故选项b是正确的。

卫星的向心加速度是万有引力作用于卫星上产生的,由,可知,因而选项c是错误的。

若使卫星c速率增大,则必然会导致卫星c偏离原轨道,它不可能追上卫星b,故d也是错误的。

解:本题正确选项为b。

点评:由于人造地球卫星在轨道上运行时,所需要的向心力是由万有引力提供的,若由于某种原因,使卫星的速度增大。则所需要的向心力也必然会增加,而万有引力在轨道不变的时候,是不可能增加的,这样卫星由于所需要的向心力大于外界所提供的向心力而会作离心运动。

探究活动

1、观察月亮的运动现象。

2、观察日出现象。

一键复制全文保存为WORD