七年级数学基本知识点

天才就是勤奋曾经有人这样说过。如果这话不完全正确,那至少在很大程度上是正确的。学习,就算是天才,也是需要不断练习与记忆的。下面是小编给大家整理的一些七年级数学的知识点,希望对大家有所帮助。

七年级数学知识点

生活中的轴对称

1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2、轴对称:对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。

3、轴对称图形与轴对称的区别:轴对称图形是一个图形,轴对称是两个图形的关系。

联系:它们都是图形沿某直线折叠可以相互重合。

2、成轴对称的两个图形一定全等。

3、全等的两个图形不一定成轴对称。

4、对称轴是直线。

5、角平分线的性质

1、角平分线所在的直线是该角的对称轴。

2、性质:角平分线上的点到这个角的两边的距离相等。

6、线段的垂直平分线

1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。

2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。

7、轴对称图形有:

等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(无数条)、线段(1条)、角(1条)、正五角星。

8、等腰三角形性质:

①两个底角相等。②两个条边相等。③“三线合一”。④底边上的高、中线、顶角的平分线所在直线是它的对称轴。

9、①“等角对等边”∵∠B=∠C∴AB=AC

②“等边对等角”∵AB=AC∴∠B=∠C

10、角平分线性质:

角平分线上的点到角两边的距离相等。

∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF

11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等。

∵OC垂直平分AB∴AC=BC

12、轴对称的性质

1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。

2、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。

3、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。

13、镜面对称

1.当物体正对镜面摆放时,镜面会改变它的左右方向;

2.当垂直于镜面摆放时,镜面会改变它的上下方向;

3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;

学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法

(1)利用镜子照(注意镜子的位置摆放);(2)利用轴对称性质;

(3)可以把数字左右颠倒,或做简单的轴对称图形;

七年级数学重要知识点

一元一次方程的解

定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右两边相等。

13、解一元一次方程:

1.解一元一次方程的一般步骤

去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。

2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。

使方程逐渐转化为ax=b的最简形式体现化归思想。

将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。

14、一元一次方程的应用

1.一元一次方程解应用题的类型

(1)探索规律型问题;

(2)数字问题;

(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);

(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);

(5)行程问题(路程=速度×时间);

(6)等值变换问题;

(7)和,差,倍,分问题;

(8)分配问题;

(9)比赛积分问题;

七年级数学考试知识点

直线与角

-------------4.1几何图形

形状:方的、圆的等

(1)①几何图形大小:长度、面积、体积等

位置:相交、垂直、平行等

②几何体也简称体。包围着体的是面。

③常见的立体图形:圆柱(一曲面二平面)、圆椎(一曲面一平面)、圆台、球(一曲面)、长方体(六面八点十二棱)、四面体(三棱锥)、三棱柱(各部分不都在一个平面内,在一个平面内就是平面图形。)新课标第一网

④点线面体:是组成几何图形的基本元素(是几何图形);点动成线,线动成面,面动成体。

(2)展开与折叠:圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;正方体展开六个面可用“1字型”、“Z字型”模型认识。

(3)三视图:主视图(从正面看)、左视图(从左面看)、俯视图

(从上面看)。

----------4.2直线、射线、线段

1.特点与表示方法:

①直线没有端点,向两方无限延伸(不能用延长描述),可用两个大

写字母或小字字母表示;

②射线只有一个端点,向一方无限延伸,用端点和延伸方向中的任意

一点表示;端点相同,延伸方向相同的两条射线是同一条射线(两个相同)。

③线段有两个端点,可用两个大写字母或小字字母表示(不能延长)。

2.连接两点间的线段的长度,叫做这两点之间的距离。线段是图形,距离有大小。

3.经过两点有一条直线,并且只有一条直线。(两点确定一条直线)。

4.经过两点的所有连线中----------线段最短(两点之间,线段最短)


七年级数学基本知识点相关文章

一键复制全文保存为WORD