部编版九年级数学知识点

只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。

初三年级下学期数学知识点

【二次函数的应用】

在公路、桥梁、隧道、城市建设等很多方面都有抛物线型;生产和生活中,有很多“利润”、“用料最少”、“开支最节约”、“线路最短”、“面积”等问题,它们都有可能用到二次函数关系,用到二次函数的最值。

那么解决这类问题的一般步骤是:

第一步:设自变量;

第二步:建立函数解析式;

第三步:确定自变量取值范围;

第四步:根据顶点坐标公式或配方法求出最值

(在自变量的取值范围内)。

二次函数的图像与性质

二次函数的概念:一般地,形如ax^2+bx+c=0的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数a≠0,而b,c可以为零.二次函数的定义域是全体实数.

二次函数图像与性质口诀

二次函数抛物线,图象对称是关键;

开口、顶点和交点,它们确定图象限;

开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

初三上数学知识点归纳

三角形的外心定义:

外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。

外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。

三角形的外心的性质:

1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;

2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;

3.锐角三角形的外心在三角形内;

钝角三角形的外心在三角形外;

直角三角形的外心与斜边的中点重合。

在△ABC中

4.OA=OB=OC=R

5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

6.S△ABC=abc/4R

初三上学期数学知识点

一、相似三角形(7个考点)

考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小

考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.

考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.

考点3:相似三角形的概念

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.

考点4:相似三角形的判定和性质及其应用

考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.

考点5:三角形的重心

考核要求:知道重心的定义并初步应用.

考点6:向量的有关概念

考点7:向量的加法、减法、实数与向量相乘、向量的线性运算

考核要求:掌握实数与向量相乘、向量的线性运算

二、锐角三角比(2个考点)

考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.

考点9:解直角三角形及其应用

考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形.

数学学习方法

1、有准备地进入每一堂课,带着兴趣,带着问题,带着目的听课。准备什么呢就是根据课程表的安排,有针对性地预习弱项课程,预习时要弄清下一节课的内容,其中哪些是清楚的,哪些是模糊的,哪些是不懂的,由此确定出听课的重点。课后进行总结,归纳出所讲知识的框架,然后做相关练习。

2、按部就班,平时学习不应贪快,要一章一章过关,不要轻易留下不明白或者理解不深刻的问题。

3、学习,“习”的作用决定了学习结果是否有好的成效。每次听完课后,阅读一些相关的辅导资料,做一些相关的习题。现在的辅导资料很多,哪一种好呢哪一种适合自己的情况在书店的辅导资料书架前大致阅读一些,感觉哪本自己看起来很舒服,就用哪一本。如果还感觉不准,可以咨询代课老师。

部编版九年级数学知识点相关文章

一键复制全文保存为WORD