九年级数学课本知识点

知识是取之不尽,用之不竭的。只有限度地挖掘它,才能体会到学习的乐趣。任何一门学科的知识都需要大量的记忆和练习来巩固。虽然辛苦,但也伴随着快乐!下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。

初三数学知识点

二次函数

知识点一、平面直角坐标系

1,平面直角坐标系

在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点,不属于任何象限。

2、点的坐标的概念

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征

1、各象限内点的坐标的特征

点P(x,y)在第一象限

点P(x,y)在第二象限

点P(x,y)在第三象限

点P(x,y)在第四象限

2、坐标轴上的点的特征

点P(x,y)在x轴上,x为任意实数

点P(x,y)在y轴上,y为任意实数

点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)

3、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线上x与y相等

点P(x,y)在第二、四象限夹角平分线上x与y互为相反数

4、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

5、关于x轴、y轴或远点对称的点的坐标的特征

点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数

点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数

点P与点p’关于原点对称横、纵坐标均互为相反数

6、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x轴的距离等于

(2)点P(x,y)到y轴的距离等于

(3)点P(x,y)到原点的距离等于

数学学习方法技巧

重视构建知识网络——宏观把握数学框架

要学会构建知识网络,数学概念是构建知识网络的出发点,也是数学中考[微博]考查的重点。因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类、定义、性质和判定,并会应用这些概念去解决一些问题。

重视夯实数学双基——微观掌握知识技能

在复习过程中夯实数学基础,要注意知识的不断深化,重视强化题组训练——感悟数学思想方法

除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思的习惯。反思自己的思维过程,反思知识点和解题技巧,反思多种解法的优劣,反思各种方法的纵横联系。而总结出它所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类旁通。逐步学会观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。

重视建立“病例档案”——做到万无一失

准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正,这样到中考时你的数学就没有什么“病例”了。我们要在教师的指导下做一定数量的数学习题,积累解题经验、总结解题思路、形成解题思想、催生解题灵感、掌握学习方法

重视常用公式技巧——做到思维敏捷准确

对经常使用的数学公式要理解来龙去脉,要进一步了解其推理过程,并对推导过程中产生的一些可能变化自行探究。对今后继续学习所必须的知识和技能,对生活实际经常用到的常识,也要进行必要的训练。例如:1-20的平方数;简单的勾股数;正三角形的面积公式以及高和边长的关系;30°、45°直角三角形三边的关系……这样做,一定能更好地掌握公式并胜过做大量习题,而且往往会有意想不到的效果。

重视中考动向要求——勤练解题规范速度

要把握好目前的中考动向,特别是近年来上海的中考越来越注重解题过程的规范和解答过程的完整。在此特别指出的是,有很多学生认为只要解出题目的答案就万事大吉了,其实只要是有过程的解答题,过程分比最后的答案要重要得多,不要会做而不得分。

初三数学复习知识点

轴对称知识点

1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.角平分线上的点到角两边距离相等。

4.线段垂直平分线上的任意一点到线段两个端点的距离相等。

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6.轴对称图形上对应线段相等、对应角相等。

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8.点(x,y)关于x轴对称的点的坐标为(x,-y)

点(x,y)关于y轴对称的点的坐标为(-x,y)

点(x,y)关于原点轴对称的点的坐标为(-x,-y)

9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。

10.等腰三角形的判定:等角对等边。

11.等边三角形的三个内角相等,等于60,

12.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60的等腰三角形是等边三角形

有两个角是60的三角形是等边三角形。

13.直角三角形中,30角所对的直角边等于斜边的一半。

不等式

1.掌握不等式的基本性质,并会灵活运用:

(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c。

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc。

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac

2.比较大小:(a、b分别表示两个实数或整式)

一般地:

如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;

如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;

如果a

即:a>b<===>a-b>0;a=b<===>a-b=0;aa-b<0。

3.不等式的解集:能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。

4.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左。

一元一次方程的解法

1.一般方法:

①去分母:去分母是指等式两边同时乘以分母的最小公倍数。

②去括号:括号前是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变。括号前是“-”,把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。(改成与原来相反的符号。

③移项:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

④合并同类项:通过合并同类项把一元一次方程式化为最简单的形式:ax=b(a≠0)。

⑤系数化为1。


九年级数学课本知识点相关文章

一键复制全文保存为WORD