高中数学选择题蒙题技巧2020

  数学对于很多高中生来说,是一个很有难度的科目。那么,高中数学蒙题技巧 有哪些呢?接下来是小编为大家整理的高中数学选择题蒙题技巧,希望大家喜欢!

  高中数学选择题蒙题技巧一

  1.数形结合法

  由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

  2.特值检验法

  对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

  3.极端性原则

  将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

  4.逆向思维

  很多物理过程具有可逆性,如运动的可逆性,光路的可逆性等,在沿着正向“由因到果”去分析受阻时,可“反其道而行之”,沿着逆向“由果到因”的过程去思考,常常收到化难为易、出奇制胜的效果。

  高中数学选择题蒙题技巧二

  代入法

  代入法往往适合给定了一些条件的题型,比如说是未知数ab,它会分别给出a、b一个特定的条件,然后让你求ab组合在一起的式子,这么看可能会很复杂。但是如果是选择题,你可以把选项中的答案代入到式子中来计算,就会简单很多!

  区间法

  区间法也可以称之为排除法,靠着大概计算出来的数据或是猜测的一些数据来选择。比如说一个选择题题目里给了好几个角度,很明显,答案一定和这几个角度有关系。

  坐标法

  如果做一些图形题时可能会完全找不到思路,第一可以用比例法,第二就可以用坐标法,不管是哪类的三角函数,其实只要找到两点坐标,就可以直接代入函数求垂直、求长度、求相切相离公式,直接就可以求出答案,不用一点点的找角度了。

  比例法

  其实比例法很简单也很无赖,遇到图形题,首先把已知条件标上去,未知的可以用量角器量出来,之后就可以用尺子来量出两条实线的比例关系,然后通过已知的一边,用比例去估算求的那一边就可以了。不要怀疑,就是这么神奇!

  函数法

  函数法就是要把一些计算转换成函数,然后代入答案,移项,把方程的一边变为0,然后把函数表达式画出来,看与零点有没有唯一的焦点,这样就可以根据函数的图像判断答案了!

  高中数学选择题蒙题技巧三

  1.选择与填空中出现不等式的题目,优选特殊值法,选取中间值带入,选取好算易得的;

  2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法,将各种函数模型牢记于心,每个模型特点也要牢记;

  3.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”,函数的零点就是方程的根。

  4.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如恒过的定点,二次函数的对称轴,三角函数的周期等;

  5.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

  6.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,采取分离常数,最终变为恒成立问题,求最值;

  7.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

  8.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;

  9.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

  10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

  11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

  12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,13.熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;

  14.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

  15.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;

  17.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;

  16.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;

  18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;

  19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;

  20.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。



高中数学选择题蒙题技巧2020相关文章

一键复制全文保存为WORD