2022初二数学下册必备知识点归纳

在我们上学期间,是不是经常追着老师要知识点?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。哪些才是我们真正需要的知识点呢?下面小编为大家带来2022初二数学下册必备知识点归纳,希望大家喜欢!

初二数学下册知识点

1、分式:

(1)分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。

(2)分式是否有意义的条件:分式的分母是否等于0,有意义则分母不为0,无意义则分母为0。

(3)分式值为零的条件:分式A/B=0的条件是A=0,且B≠0。

注意:求出使分子为0的字母的值,一定要注意检验这个字母的值是否使分母的值为0,一般当分母的值不为0时,就是所要求的字母的值。

(4)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

(5)分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

注意:通分的关键是确定几个式子的最简公分母。几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。求最简公分母时应注意以下几点:

● “各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;

● 如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;

● 如果分母是多项式,一般应先分解因式。

(6)分式的约分:根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。

注意:约分的关键是找出分式中分子和分母的公因式

◆(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;

◆(2)找公因式的方法

① 当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;

②当分子、分母都是多项式时,先把多项式因式分解。

2、分式方程

(1)分式方程的概念

◆ a、分式方程的重要特征:

①是等式;

②方程里含有分母;

③分母中含有未知数.

◆ b、分式方程和整式方程的区别:在于分母中是否有未知数。

(2)分式方程的解法

解分式方程的一般步骤:

a、方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);

b、解整式方程,求出整式方程的解;

c、检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解。

注意:解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的。

运算知识点

分式的四则运算

◆ 乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

◆ 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

◆ 乘方法则:分式乘方要把分子、分母各自乘方。用式子表示是:(其中n是正整数)

◆ 加减法则:同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,转化为同分母分式,然后再加减。

注意

(1)异分母分式相加减,“先通分”是关键,最简公分母确定后再通分,计算时要注意分式中符号的处理,特别是分子相减,要注意分子的整体性;

(2)运算时顺序合理、步骤清晰;

(3)运算结果必须化成最简分式或整式。

数学有理数比大小知识点

(1)正数永远比0大,负数永远比0小;

(2)正数大于一切负数;

(3)两个负数比较,绝对值大的反而小;

(4)数轴上的两个数,右边的数总比左边的数大;

(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

数学线段的性质

(1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

初二数学下册知识点梳理

一.选择题:(每题5分)

1.下列 关于x的方程中,是分式方程的是 ( )

A. 3x=12 B. 1x =2C. x+25 = 3+x4 D .3x-2y=1

2.下列各式计算正确的是( )

A.B.C.D.

3.下列各式正确的是( )

A.B.C.D.

4.解方程 去分母得 ()

A.B.

C. D.

5. 化简 的结果是( )

A .B. C.D.

6.若分式 的值为0,则()A.B.C.D.

7.若 ,则 的值是()A. B. C. D.

二.填空题:(每题5分)

9.在下列三个不为零的式子 中,任选两个你喜欢的式子组成一个分式是 ,把这个分式化简所得的结果是 .

10. 某种感冒病毒的直径是0.00000034米,用科学记数法表示为__________________米 ;

11.计算 的结果是_________.

12.若关于x的分式方程 在实数范围内无解,则实数a=________.

13.已知 ,则 .

三.解答题: (每题7分)

14.化简:

15 .计算:

18.请先将下式化简,再选择一个你喜欢又使原式有意义的数代入求值.

初二数学下册知识点归纳

一、分解因式

1、 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

2、 因式分解与整式乘法是互逆关系。

因式分解与整式乘法的区别和联系:

(1)整式乘法是把几个整式相乘,化为一个多项式;

(2)因式分解是把一个多项式化为几个因式相乘。

二、提公共因式法

1、如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。这种分解因式的方法叫做提公因式法。

如:

2、概念内涵:

(1)因式分解的最后结果应当是"积";

(2)公因式可能是单项式,也可能是多项式;

(3)提公因式法的理论依据是乘法对加法的分配律,即:

3、易错点点评:

(1)注意项的符号与幂指数是否搞错;

(2)公因式是否提"干净";

(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉。

数学一元一次方程解法的一般步骤

使方程左右两边相等的未知数的值叫做方程的解。

一般解法:

(1)去分母:在方程两边都乘以各分母的最小公倍数;

(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

(4)合并同类项:把方程化成ax=b(a≠0)的形式;

(5) 系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.

数学函数的概念知识点

1.常量与变量:在某一变化过程中,可以取不同数值的量叫做变量;在某一变化过程中保持数值不变的量叫做常量.

2.函数:在某一变化过程中的两个变量x和y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值和它对应,那么y就叫做x的函数,其中x做自变量,y是因变量.

(1)自变量取值范围的确定

①整式函数自变量的取值范围是全体实数.

②分式函数自变量的取值范围是使分母不为0的实数.

③二次根式函数自变量的取值范嗣是使被开方数是非负数的实数,若涉及实际问题的函数,除满足上述要求外还要使实际问题有意义.


2022初二数学下册必备知识点归纳相关文章

一键复制全文保存为WORD