在当今社会生活中,课堂教学是重要的工作之一,反思过去,是为了以后。反思应该怎么写才好呢?的小编精心为您带来了五年级数学上册教案【优秀6篇】,希望可以启发、帮助到大家。
教学目标:
1、在理解的基础上掌握梯形面积计算公式的推导,并能运用公式正确计算梯形的面积。
2、通过动手操作、观察、比较,发展学生空间观念。培养学生分析、综合、抽象、概括和解决实际问题的能力。
3、掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。
教学重点:
梯形面积计算公式的推导和运用。
教学难点:
理解梯形面积公式的推导过程。
教学过程:
一、导入新课
1、平行四边形、三角形的面积公式是什么?它们的面积公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。
2、出示梯形,让学生说出它的上底、下底各是多少厘米,并画出它的高。
3、教师导语:我们已经学会了计算长方形、正方形、平行四边形、三角形的面积计算方法,生活中还有很多物体面的形状是梯形,(出示一辆汽车侧面图)如汽车玻璃就是梯形的,那梯形的面积又该如何计算呢?我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)
二、新课展开
第一层次,推导公式
(1)猜想:
让学生先猜测一下梯形的面积可能和哪些量相关。
(2)操作学具
①启发学生思考:你能仿照求三角形面积计算公式的推导办法,把梯形也转化成已学过的图形计算出它的面积吗?
②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。
③指名学生操作演示。
学生预设:
方法一:把两个完全一样的梯形拼成一个平行四边形;
方法二:把一个梯形分成两个三角形;
方法三:把一个梯形分成一个平行四边形和一个三角形。
……
师:刚才同学们用自己的方法将梯形转化成我们学过的图形,利用这些方法都可以推导出梯形的面积计算公式。下面我们先选择其中的一种方法来共同推导梯形的面积。
④教师带领学生共同操作:拿两个完全一样的梯形,先重合,再按住梯形右下角的顶点,使一个梯形逆时针旋转180度,使梯形上、下底成一条走线,然后把第一个梯形的左边沿着第二个梯形的右边平行移动,直到成为一个平行四边形为止。
(2)观察思考
①教师提出问题引导学生观察。
a.用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?
b.每个梯形的面积与拼成的平形四边形的面积有什么关系?
(3)反馈交流,推导公式。
①学生回答上述问题。
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2
问:梯形的面积公式中“(上底+下底)×高”求的是什么?
为什么要除以2?
③在小组内尝试上面另外几种不同的转化方法,如何推导出梯形的面积公式。
方法一:梯形的面积=上底×高÷2+下底×高÷2
=(上底+下底)×高÷2
方法二:梯形的面积=平行四边形面积+三角形面积
=上底×高+三角形的底×高÷2
=(2个梯形上底+三角形底)×高÷2
=(梯形上底+梯形下底)×高÷2
④字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“S=(a+b)h÷2”。
第二层次,公式应用。
(1)出示课本第89页的例题。同学们知道我国最大的水电站是哪个吗?下面是水电站大坝的横截面图,教师指导学生理解“横截面”。
(2)学生尝试解答。
(3)展示台出示例题的解答,反馈矫正。
(4)完成例题下面的“做一做”。强调计算时不要忘记除以2。
三、巩固练习
(1)完成练习十七第1、2和3题。
(2)讨论完成练习十七第4和6题。
四、全课小结。(略)
板书设计:
梯形的面积计算
平行四边形的面积=底×高例3S=(a+b)h÷2
梯形的面积=(上底+下底)×高÷2=(36+120)×135÷2
S=(a+b)h÷2=156×135÷2
=10530(平方米)
教材分析:
本节课是在学生学会计算平行四边形、三角形的面积的基础上进行教学的,这部分知识是将来进一步学习组合图形面积计算的基础。学生学习了平行四边形、三角形的面积计算公式,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。本节课内容共分为两个层次。一是推导梯形面积的计算公式;二是应用梯形面积的计算公式计算梯形面积,解决实际问题。通过观察新旧图形的内在联系得出梯形面积的计算公式。
教学目标:
1、探索并掌握梯形的面积计算公式,能应用公式正确计算梯形的面积;
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:
理解并运用梯形的面积计算公式。
教学难点:
梯形面积公式的推导过程。
教学关键:
怎样把梯形转化为学过的图形来推导出梯形的面积公式,找到转化后图形与梯形各要素之间的关系。
教学过程:
一、课前复习
同学们,前几天我们学习了平行四边形和三角形的面积的计算方法,回忆一下,平行四边形的面积公式是怎样推导出来的?三角形的呢?
(这样是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难。)
请同学们看这幅图片,汽车玻璃是什么形状的 (课件出示课本88页汽车图) ?你会计算这块玻璃形的面积吗?(大多数学生会否定)今天我们就来学习梯形的面积,相信学习完这节课你就能解决这个问题了。板书课题:梯形的面积
(在实际情景中,认识计算梯形面积的必要性。这样导入,使学生感受到数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。)
二、探索转化:
1、引导学生提出解决问题方向:
我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?(转化)你准备用什么方法把梯形转化为我们学过的图形?
(运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现温故知新的教学思想。)
2、动手转化:
(老师为每组同学都准备好一些梯形,其中有一组是两个完全相同的梯形)
小组活动一:
(1)梯形可以合理转化为什么图形?怎样转化?
(2)转化后的图形与梯形有什么联系?
小组合作交流,老师巡视指导。
全班汇报。
学生可能出现的情况:
(新课程标准的基本理念就是要让学生人人学有价值的数学,强调教学要从学生已有的经验出发,让学生亲身经历知识的学习过程。所以,在教学中,我留给学生充分的时间,小组合作,鼓励做法多样。)
3、公式推导:
同学可真聪明,想出了这么多的转化方法,我们先根据第一种转化方法来推导梯形的面积公式。
小组活动二:
现在请同学们思考一下,拼成的平行四边形的各部分与梯形的各部分有什么关系?它们的面积又有什么关系?梯形的面积计算方法又是怎样的呢?
小组交流一下,把你们组的发现或结论写下来。
全班交流自己的发现或结论。
归纳总结梯形的面积计算方法。
梯形面积 =(上底+下底)x高2 为什么要除以2呢?
(在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,通过这样的设计,体现了让学生自主探究、自主学习的教学理念,满足了学生希望自己是一个发现者、研究者、探索者的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出重点,又化解难点的目的。)
4、用字母表示梯形面积公式
同学们,如用a表示梯形上底,b表示下底, h表示高,s表示面积, 谁能用字母表示出梯形的面积公式?指名说,老师板书。
其实利用这几种转化方法(指前面画的图)也可以推出梯形的面积公式,小组合作推导一下。然后全班交流推导过程。
(鼓励学生采用多种方法进行推理,让学生各抒已见,进一步体会转化方法的价值。)
三、应用公式解决问题
1、我们已推导出了梯形的面积公式,那么我们就用梯形的面积公式解决一些实际问题吧!
同学们知道这是哪儿吗?(三峡水电站)三峡水电站是我国最大的水电站,
它的的横截面的一部分是梯形,现在我们要求这个横截面的面积。谁知道横截面是什么意思?
同学们请看图,你能求出这个梯形的面积吗?学生试做,二生板书。
订正时,让学生评价,重在理顺学生的解题思路。
(通过动手操作,自主探究,学生获得梯形面积的计算公式后,出示了课本的例题,求梯形大坝的横截面面积。通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力, 学以致用,来解决生活的实际问题。)
2、现在请同学们再来看这幅汽车图片,现在你能计算这汽车的。玻璃面积了吗? 课件出示玻璃的数据,学生试做,二生板书。集体评价。
(解决了前面导课提出的的问题,回应引入,使学生更加深刻地感受到数学与实际生活的密切联系。)
四、练习检测:
1、填空:
两个完全一样的梯形可以拼成一个平行四边形,拼成的平行四边形的底等于(), 拼成的平行四边形的高等于( ) 、梯形的面积等于拼成的平行四边形面积的( )。梯形的面积等于( )。
(理清学生思路,规范学生的数学语言,培养学生思维的逻辑性)
2、是判断题,判断出对错并且说出原因,提高学生对新课的理解。
(1)两个面积相等的梯形可以拼成一个平行四边形。 ( )
(2)梯形的上底扩大2倍,下底也扩大2倍,面积扩大4倍。( )
(3)梯形的面积等于平行四边形面积的一半。( )
(4)两个梯形面积相等,但形状不一定相同。( )
五、反思总结,拓展延伸
1、学生谈收获,谈学习方法。
2、组内互评:这节课你最想表扬谁,为什么?
【教学反思】
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,猜想、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、动手操作,培养探索能力
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过拼、剪、割的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到知其然,必知其所以然,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的闸门,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过拼、剪、说的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作探究及自主学习的能力。让学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
教学目的:
1、掌握梯形的面积计算公式,能正确地计算梯形的面积。
2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学重点:
正确地进行梯形面积的计算。
教学难点:
梯形面积公式的推导。
教学准备:
投影、小黑板、若干个梯形图片(其中有两个完全一样的。
教学过程:
一、导入新课
1、提问:我们学习过哪几种平面图形的'面积计算?计算公式分别是什么?
2、你能说出平行四边形的面积公式是如何推导的吗?三角形的面积公式呢?
3、创设情境:
投影显示:
启发谈话:同学们能依照平行四边形和三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?(板书课题)
二、新课展开
1、操作探索
⑴拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。
提问:你拼成了什么图形,怎样拼的?演示一遍。
⑵看一看,观察拼成的平行四边形。
提问:你发现拼成的平行四边形和梯形之间的关系了吗?
出示小黑板:
拼成的平行四边形的底等于(),平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的()。
⑶想一想:梯形的面积怎样计算?
学生讨论,指名回答,师板书。
梯形的面积=(上底+下底)×高÷2
师:(上底+下底)表示什么?为什么要除以2?
⑷做一做:计算“前面出示的梯形”的面积。
2、扩散思维
师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式?下面小组讨论。分组汇报:
生1:做对角线,把梯形分割成两个三角形,:
生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。
生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,
师:同学们真聪明,想出了好多种方法,推导出了梯形的面积计算公式,但不管采取何种方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。”
3、抽象概括
师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积你会表示吗?
生:s=(a+b)h÷2
4、反馈练习
完成课本p81做一做(一人板演)
三、应用深化
出示例子:一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米,它的横截面的面积是多少平方米?
解释:举例说明“横截面”的含义。学生尝试计算:
(2.8+1.4)×1.2÷2
=4.2×1.2÷2
=5.04÷2
=2.52(平方米)
答:它的横截面的面积是2.52平方米。
2、反馈练习:完成p82第1题
四、巩固练习:p82第2题
五、全课小结
六、作业:p82第3、4题
教学反思:
实践操作是儿童智力活动的源泉,在教学中我以实践操作为切入点,使抽象的概念具体化,积极推动学生的思维发展。让学生拼一拼、看一看、想一想、做一做,获得感性材料,为概括出新概念、总结新方法打下基础。
在教学是我注重了对学生的创新精神和实践能力的培养,真正体现学生是学习的主人。
教学目标:
使学生进一步熟悉分数的基本性质,能正确地应用分数的基本性质,把一个分数化成指定分母(或分子)做分母(或分子),而大小不变的分数。
教学重点:
应用分数基本性质,把一个分数化成指定分母(或分子)做分母(或分子),而大小不变的分数
教学难点:
能正确应用分数基本性质解决有关的问题。
教学课型:
新授课
教具准备:
课件
教学过程:
一,迁移类推,导入新课
1,口答:什么是分数的基本性质
2,在下面的括号内填上适当的数。 [课件1]
3/4=( )/8 1/2=( )/10 6/( )=2/7
2/3=( )/18=16/24 12/24=( )/( )
二,探求新知,提高能力
教学P108 .例2:把2/3和10/24化成分母是12而大小不变的分数。
提问:
A,怎样使2/3的分母变成12
B,根据分数的基本性质,要使分数2/3的大小不变,分子应怎样变化
板书: 2/3=2×4/3×4=8/12
C,怎样使10/24的分母变成12
D,根据分数的基本性质,要使分数10/24的大小不变,分子应怎样变化
板书: 10/24=10÷2/24÷2=5/12
补充例题:把2和3/7,5/8化成分母是它们的最小公倍数而大小不变的分数。
分析:
A,想想,它们的'最小公倍数是几
B,2是个整数,怎样化成分数呢以多少做分母,分子又是多少呢
P108 .做一做1,2
三,巩固练习,强化提高
1,P109 .2
2,P109 .4
3,P110 .10
提问:这道题是在什么情况下份数的大小发生变化这个变化有没有规律呢?
述:一个分数的分母不变,分子扩大(或缩小)若干倍,分数大小也扩大(或缩小)相同的倍数;如果分子不变,分母扩大(或缩小)若干倍,分数大小反而缩小(或反而扩大)相同的倍数。即:一个分数的分母不变,分子乘以3,这个分数就扩大3倍;如果分子不变,分母除以5,这个分数就扩大5倍。
2,P110 .11
要根据分数和除法关系,把分数的基本性质和除法中商不变的性质联系起来思考,进行填空。
3,P110 .思考题
先用5升水桶量出5升水,倒入7升水桶中;再用5升水桶量出5升水,倒满已装入5升的7升水桶,这时5升水桶里剩下3升水;将7升水桶中的水倒掉,把5升水桶中的3升水倒入7升水桶中;再用5升水桶量出5升水,倒满已装3升的7升水桶,剩下的就是1升水。
四,家作
P110 .7,8,9
一、 教学目标
1、 在实际情境中,认识计算梯形面积的必要性。
2、 在自主探索活动中,经历推导梯形面积公式的过程。
3、 运用梯形面积的计算公式,解决相应的实际问题。
二、 重点难点
重点:梯形面积公式的推导过程。
难点:能运用梯形面积的计算公式,解决相应的实际问题。
三、 教学准备
相等梯形若干个、小剪刀、挂图
四、 教学设计
(一)复习旧知,铺垫引导
1、 前面我们推导了平行四边形和三角形面积的计算公式,还记得三角形面积的计算公式是怎么推导出来的吗?(转化成平行四边形)
2、 把不知道的'转化成知道的从而得出结论,是我们常用的探究新知的方法。
(二)揭示课题,探索新知
1、 出示主题图:这是一个堤坝的横截面,从图中你得到了哪些信息?(横截面是梯形,上底是20米,下底是80米,高是40米)
2、 今天我们就一起动手推导梯形面积的计算公式。(板书:梯形的面积)
3、 下面请同学们拿出准备好的梯形,通过转化的方法,自己动手拼一拼或剪一剪,推导出梯形面积的计算公式。(教师巡视指导)
4、 小组内交流方法。
5、 学生汇报,教师总结。
(1)平移法
用两个大小完全一致的梯形。经过旋转、平移组成平行四边形。
(2)分割法
将梯形分割成两个三角形。
(3)割补法
取两条边的中点(中位线)剪开,经过旋转、平移组成平行四边形。
得出结论: 梯形面积=(上底+下底)高2
字母表示:S=(a+b)h2
(三)巩固练习
1、 P28试一试。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)
2、 P28练一练1题,继续巩固练习。
(四)总结全文
1、 这节课我们学习了什么?
2、 梯形面积公式的推导〈梯形面积=(上底+下底)高2〉
五、 板书设计
梯形的面积
梯形面积=(上底+下底)高2
字母表示:S=(a+b)h2
六、 教学反思
本节课的教学,我是采取学生亲自动手操作实践来得出梯形的面积公式。但在学生探索的时候,学生的思维大多只停留在平行四边形上,也就是书中的第一个例子。在课堂练习的时候,由于公式记得不牢,在求面积的时候经常忘了除2。
教学内容:
九年义务教育六年小学制数学第九册第74—75页。
教学目标:
1、在理解的基础上掌握梯形面积的计算方法,能正确地计算梯形的面积。
2、通过操作、观察、比较,发展学生的空间观念,培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
3、渗透旋转和平移的思想,充分发挥学生的主观能动性,启发学生探索合作,让学生在实验中感受数学知识的内在美,体验创新的乐趣。
教学重点:
理解并掌握梯形面积公式的推导,会计算梯形的面积。
教学难点:
理解梯形面积公式的推导过程。
教具准备:
两个完全一样的梯形若干个。
学具准备:
各小组准备两个完全一样的梯形一对。
教学过程
一、复习导入:
1.cai出示已学过的平面图形,说出它们的面积公式并计算出它们的面积。
(学生回答,依次出现相应图形面积的计算公式)
提问:三角形的面积公式为什么是用底×高÷2?
2.教师设疑:出示一个梯形,想一想你能仿照求三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?
二、教学新课:
(一)、引入课题:那我们也用两个完全一样的梯形来做实验,共同研究“梯形面积的计算” 。(板书课题:梯形面积的计算)
(二)、实验探究:
1.猜一猜:
① 两个完全一样的梯形可能拼成什么图形?
② 梯形的面积会跟梯形的什么有关呢?
2.小组合作实验,推导梯形面积的计算公式:
(1)教师谈话:利用手里的学具(标出上底、下底和高),仿照求三角形面积的方法试着推导出梯形面积的计算公式。
(2)思考:
①两个完全一样的梯形可以拼成已学过的什么图形?怎么拼?
② 拼成的这个图形的面积跟梯形的面积有什么关系?
③ 你觉得梯形的面积可以怎样计算?
(3)小组合作,学生实验。
3. 实验汇报。
4. 引导学生看图并提问:这个梯形的`面积可以怎样计算?
现在给你一个任意梯形,你都能求出它的面积吗?怎么求?为什么?
5.概括总结、归纳公式。
教师提问:
①为什么计算梯形的面积要用(上底+下底)×高÷2?
②要求梯形的面积必须知道哪些条件?
三、练习:
(一).基本练习:
(二)解决问题:
四、小结:
通过这节课的学习你有哪些收获?你能详细的说说梯形面积的推导过程吗?
五、巩固提高。
板书设计:
梯形面积的计算
梯形的面积=(上底+下底)×高÷2 )
s = (a+b)×h÷2
教学反思:
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形面积的计算》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、动手操作 培养探索能力
在推导梯形面积计算公式时,安排了两次操作活动。首先让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后引导学生思考讨论:梯形与你拼成的平行四边形有什么联系?引导学生发现每个梯形的面积是拼成平行四边形面积的一半,然后再让学生用一个梯形,想办法把它转化成已学过的图形来推导梯形的面积公式。通过两次实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
二、发散验证 培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出梯形面积的计算方法。通过“拼、移”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。
在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在动手操作以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
但也存在一些不足之处,例如:在推导验证的过程中,学生表达得不够清晰,对于推导的过程理解得还不够透彻。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我需要反思的问题。