作为一名老师,常常需要准备教案,教案有助于顺利而有效地开展教学活动。教案要怎么写呢?这次帅气的小编为您整理了六年级上册《圆的面积》教案优秀10篇,希望能够给予您一些参考与帮助。
教学目标:
1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。
2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。
教学难点:
应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
教学准备:
圆规,环形图片,教学情境图。
教学过程:
一、创设情境,引入新知
1.出示自然界中的一些环形图片。
(l)观察图片,说说这些图形都是由什么组成的。
(2)你能举出一些环形的实例吗?
2.引入:今天这节课我们就一起来研究环形面积的计算方法。
二、合作交流,探究新知
1.教学例11。
(1)出示例11题目,读题。
(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。
(3)小组讨论,理清解题思路。
(4)集体交流
①求出外圆的面积。
②求出内圆的面积。
③计算圆环的面积。
(5)学生按步骤独立计算。
(6)组织交流解题方法,教师板书
①求出外圆的面积:3.14102 =314(平方厘米)
②求出内圆的面积:3.1462 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
(7)提问:有更简便的计算方法吗?
一、本课是在学生学习了圆的认识的基础上进行教学的,力求实现变抽象为直观,化静为动,为学生提供丰富的感性材料,促进学生知识的迁移,帮助学生理解公式的推导过程,激发学生的学习兴趣,渗透数学中的转化思想。
教学导入时,我首先以当前的热点话题20xx奥运会切入主题,学生倍感亲切,紧紧抓住了学生的注意力,学生在教师的适时调控下由奥运会主会场鸟巢自然过渡到怎样求圆的面积呢?力求达到衔接自然的教学效果。
二、新授中首先让学生借助学具的操作,把圆形平均分成若干份,通过观察发现每份是近似的三角形,进而把圆分割成若干个三角形,借助三角形的面积公式推导出圆的面积公式,同时向学生渗透极限的思想,分的份数越多,每一份越接近三角形。之后教师引导学生利用分割后的三角形重新拼组成我们学过的长方形,依据它们之间的联系也能推导出圆的的面积公式。以上两种方法,一种是分割法,一种是拼组法,无论哪一种方法都渗透了转化的思想,引导学生找出新旧知识的衔接点,温故而知新,力求达到有效突破教学难点的目的。
三、练习中首先让学生通过一组口头列式,及时巩固所学新知,力求使学生获得成功的喜悦!在此基础上,将导入时怎样求鸟巢的占地面积,补充上条件,让学生利用所学解决实际问题,首尾呼应,力求取得事半功倍的教学效果。最后给学生一个紧密联系实际的数学问题,求学校花坛的面积,激起学生的兴趣,学生在讨论中明确先测量出周长,然后求出半径,再计算花坛的面积,力求使学生在不断的尝试中逐步提高,升华新知!
教学目的:
1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
2.能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。
教学重点:
理解和掌握圆面积的计算公式的推导过程
教学难点:
圆面积计算公式的推导
教学过程:
一 、创设情境,提出问题
( 课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)
生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少?
二、引导探究,构建模型
A:启发猜想
师:羊吃到草的最大面积最大是圆形:
1、这个圆的面积有多大猜猜看;
2、试想圆的面积和哪些条件有关?
3、怎样推导圆的面积公式?(生试说)
B:分组实验,发现模型
学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:
1、你摆的是什么图形?
2、你摆的图形与圆的面积有什么关系?
3、图形各部分相当于圆的什么?
4、你如何推导出圆的面积?
请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况。
三、 应用知识,拓展思维
1、师:要求圆的面积必须知道什么?
2、运用公式计算面积
A、完成羊吃草的面积
B、完成课后“做一做”
C、一个圆的直径是10厘米,它的面积是多少平方厘米?
D、找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物直径(厘米)半径(厘米)面积(平方厘米)
3、应用知识解决身边的实际问题(知识应用)
下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是2.4元,学校一共要付多少钱才能完成?
四、归纳总结,完善认知
今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?
教学目的
使学生知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确地计算圆的面积。
教具、学具准备
教师仿照教科书第94页上的图用木板制作教具,准备长方形、平行四边形、梯形和圆形纸片各一个;学生把教科书第187页上面的图剪下来贴在纸板上,作为操作用的学具。
教学过程
一、复习
1、教师:什么叫做面积?长方形的面积计算公式是什么?
2、教师:请同学们回忆一下平行四边形、三角形和梯形的面积计算公式的推导过程。想一想这些推导过程有什么共同点?
二、新课
1、教学圆面积的含义及计算公式。
教师依次拿出长方形、平行四边形、三角形和梯形图,边演示(然后贴在黑板上)边说:“我们已经学过这些图形的面积,请同学们说一说这些图形的面积有什么共同的地方?”使学生明确:这些图形的面积都是由边所围成的平面的大小。
教师再出示圆,提问:这是一个圆,谁能联系前面这些图形的面积说一说圆的面积是什么?让大家讨论。最后教师归纳出:圆所围平面的大小叫做圆的面积。
教师:我们已经知道了什么是圆的面积,请同学们联系前面一些图形的面积公式的推导过程想一想,怎样能计算圆的面积呢?使学生初步领会到可以把圆转化成一个已学过的图形来推导圆面积的计算公式。
2、教学例3。
教师出示例3,指名读题,让学生试着做,提醒学生不用写公式,直接列算式就可以。
然后让学生对照书上的解题过程,看自己做得对不对;如果错了,错在什么地方。教师要强调指出:列出算式后,要先算平方,再与π相乘。最后小结一下解题过程。
三、课堂练习
做练习二十四的第1~5题。
1、第1题,让学生直接列式计算,指名板演,教师巡视,检查学生有没有把圆的面积公式写成圆的周长公式来计算,书写格式对不对,写没写单位名称。订正时了解学生还存在什么问题,及时纠正。
2、第2题,让学生独立做,教师巡视,除了注意学生在做第1题时易犯的错误外,还要检查学生有没有把第(2)小题的直径当半径直接计算的,订正时提醒学生做题时要认真审题。
3、第3题,让学生自己做,集体订正。
4、第4题,指名读题,让学生说一说这道题与第3题有什么不同的地方,能不能直接计算。使学生明确要先算出半径,再计算。
5、第5题,让学生读题,看着右面的示意图说一说题意,再让学生做,集体订正。
《圆面积》小学数学评课稿
李老师讲的《圆的面积》这节课,是北师大版六年级的教材内容。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。
因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。听了李老师讲的《圆的面积》一课,深受启发,感觉课讲的很成功。由于李老师多次深入钻研教材,可以说准确地理解教材编写意图,跳出教材,对传统的课堂教学结构进行大胆的改革,把教师的主导作用和学生主体作用紧密结合起来,强化教学互动、学生实验操作推理验证,对提高学生素质和培养学生[此文转于YY空间。com]的创新意识与实践能力具有一定的作用,取得了较好的教学效果。我认为主要有以下几方面的亮点:
一、转变教师角色,改善教学行为。
在实施新课程的背景下,在“以发展为本”的课堂教学中,“教师的职责现在已经越来越少地传授知识,而是越来越多地激励思考;……他将越来越成为一位顾问,一位交换意见的参加者,一位帮助发现矛盾论点而不是拿出现成真理的人。他必须拿出更多的时间和精力去从事哪些有效果的和有创造性的活动:互相影响、讨论、激励、了解、鼓舞。”本课教学中,李老师更多地体现为:引导者——给学生的。学习提供明确的导航目标,辅导者——为学生提供各种便利与支持,使学生能够比较轻松地完成学习任务。合作者——关注学生的学习,参与学生的学习活动,与学生共同探讨问题,共同寻求问题的答案。与学生构成良好的学习共同体。
二、重视自主探究,发挥学生主体性。
学生主动参与学习活动,不但能使学生主动获取知识,促进知识的意义建构,更能培养学生[此文转于YY空间。com]的参与意识和创新精神。在教学“圆环的面积”计算公式推导时,李老师先让学生看一看一个大圆当中的小圆可以拿出来,那剩下的图形的面积也就是圆环的面积要怎么来求呢?学生通过图形能够直观的推出圆环的面积就应该用大圆的面积—小圆的面积,从而来推导出圆环的面积计算公式,然后留给学生充分的时间和空间,让学生自己在下面计算圆环的面积。再引导学生交流、验证自己的推导想法,师生共同倾听判断学生的汇报圆环的面积公式的推导过程,看看他们的推导方法是否科学、合理,使学生们经历实验操作、总结验证的学习过程。这样有序的学习,不仅发展了学生的智能,而且提高了学生的实践能力和创新意识。
总之,这节课充分体现了李老师先进的教学理念和高超的教学艺术,充分体现张老师追求课堂教学有效性的探索过程,给我以深刻的启示和借鉴。
大邑县元兴小学 易富裕
教学内容:课本67、68页内容
教学目标:
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
教学重点:利用圆面积计算公式正确计算圆的面积。
教学难点:圆面积计算公式的推导。
教具准备:等分圆教具。
学具准备:分成十六等分、十二等分的圆形纸片。
教学过程:
一、复习旧知,导入新课
1. 创设情景,出示图片:一片草地中间拴着一只小狗。
提问:小狗的最大活动范围是什么?
引出圆面积的概念:圆所占平面的大小就是圆的面积。
2.我们以前都学过什么图形的面积,平行四边形的面积计算公式是怎么推导出来的?圆的面积能不能也用这种方法推导出计算公式?
3.揭示课题:
今天这节课我们就来研究圆面积的计算方法。(板书课题:圆面积计算)
二、动手操作,探索新知
1.圆面积公式推导。
(1)动手实验。
a:学生把附页1的两个圆剪下来拼一拼(同桌合作)
b:派代表展示
(2)你有什么发现?
学生很惊奇的发现:圆转化成一个近似的平行四边形。
引导提问:a:这个图形哪里不像平行四边形呢?(边不是线段)
b:你知道这是为什么吗?怎样使拼成的图形更接近于平行四边形呢?(通过交流使,使学生明白:如果分的份数越多,每一份就会越小,拼成的图形就会越接近于长方形。)
接着,教师展示:把圆割拼成一个近似于长方形的图形。
问:圆的面积与长方形的面积有什么关系?(相等)
(3)分析圆与长方形的关系
要求小组讨论:看拼成的长方形与圆有什么联系?你能根据长方形的面积计算公式推导出圆的面积计算公式吗?
出示提示:a:拼成的长方形的面积怎样计算?
b:指出长和宽(用彩笔标出长和宽)
c:长方形的长和宽与圆的周长、半径有什么关系?
(学生汇报讨论结果。引导学生说出因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于圆的半径。然后教师按其汇报板书:)
因为:长方形的面积 = 长 × 宽
所以:圆的面积 = 周长的一半× 半径
S = πr × r
S = πr2
师:计算圆的面积需要知道什么条件 ?(半径)
2. 你能计算出小狗的最大活动范围吗?需要知道什么条件?
在练习本上算一算。指名汇报。
3.教学例1
出示例题:圆形花坛的直径是20米,它的面积是多少㎡?
(1) 这个问题如何解决?
(先求出半径再求面积)
(2) 学生尝试练习,指名板演。
强调:r2表示r×r 。
三、巩固练习
完成练习十六1-3题
1、第1题
学生独立完成,将结果填入表中,展示汇报。
2、第2题
(1)认真读题,弄清题意。
(2)独立列式计算,指名板演。
3、第3题
(1)说一说你的解题思路。
(2)学生独立思考列式解答
四、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
五、布置作业 :练习十六 第5题。
板书设计:
圆的面积
因为 长方形的面积= 长 × 宽
所以 圆的面积=周长的一半×半径
S = πr × r
S = πr2
教学目标:
1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2. 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。
3. 渗透转化的数学思想和极限思想。
教学重点:
正确计算圆的面积。
教学难点:
圆面积公式的推导。
学情分析:
本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。
学法指导:
教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。
教具准备:
多媒体课件,圆片。
学具准备:
把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。
推导圆面积计算公式的三种教法评介
教学圆面积公式的推导,我曾听过三种不同的教法,现分别简介过程及稍作评点。〔第一种教法〕
(1)复习长方形面积计算公式。
(2)让学生自学课本中推导圆面积计算公式的过程。
(3)教师边用教具演示,边要求学生回答:
①拼成的图形近似于什么图形?想一想,如果等分的份数越多,拼成的图形会怎么样?
②拼成的图形与原来圆的面积相等吗?
③这个近似长方形的长相当于圆的什么?它的宽相当于圆的什么?
(4)教师要求学生说出由长方形面积计算公式,推导出圆面积计算公式的方法(可按课本说)。
(5)揭示圆的面积公式。
〔评:这种教法,看起来是引导学生自学,并结合演示让学生回答问题,似乎学生学得较主动,实际上学 生未有实践、思考的过程,只是“依样画葫芦”,对其中的道理不能弄懂、弄通,这属于机械的学习。〕
〔第二种教法〕
1、导入新课。
教师让学生回忆一下,以前学习习近平行四边形、三角形、梯形的面积计算时,是用什么方法推导它们的计算 公式的。(用割、拼法拼成长方形或平行四边形进行计算,教师出示割、拼教具分别作简单的演示。)接着, 出示一张圆形硬纸片,问:“怎样计算它的面积呢?”(揭示课题)教师指出:我们仍可用以前学过的割、拼 法,把圆转化为已学过的图形,运用此图形的面积计算方法,推导出圆面积的计算方法。
2、实际操作。
要求学生拿出圆面积的割拼图形学具,在教师的指导下,边操作,边回答以下问题:
①把一个圆平分成两半,每一个半圆形的哪一部分长度相当于圆周长的1/2?再把每一个半圆形平均分 成8等份(如课本的切割图),那么哪一段的长度相当于圆的半径?
②想一想:能不能把这些等分出的图形,拼成近似于我们以前学过的图形?怎样拼?(要求学生动手实践 ,并指名演示拼出的几种不同的图形。如:长方形、平行四边形、梯形等。)
③所拼出的图形面积与原来圆面积相等吗?
3.推导公式。
先以拼出的近似长方形的图形为例,教师引导学生弄清,若平分的份数越多,拼成的图形越接近长方形。 进而,教师要求学生据图回答:割拼后的长方形的长相当于圆的哪一部分的长度?宽相当于圆的哪一部分的长 度?从而
由 长方形的面积=长×宽
↓ ↓
得 圆的面积 =πr×r=πr[2]。
然后,出示拼出的近似的平行四边形或梯形,再次推导看能否得出上面的圆面积公式(略)。这样就得到 了证实,使学生确信无疑。
〔评:这种教法比第一种教法有很大的改进,教师首先通过复习旧知,提出解决问题的办法,把新旧知识 有机结合起来,明确了本课中心内容,然后让学生亲手操作割拼成几种已学过的图形,引导学生观察、思考、 比较、推导,其间不囿于课本中的推导方法,让学生思维得以发散,从而强化了转化思想,多渠道地推得圆面 积计算公式。学生在学习过程中,始终处于积极主动的状态,这种学习是有意义的学习,不仅使他们“学会” ,而且使他们“会学”,且有助于发展学生的智能。〕
〔第三种教法〕
1、引入新课。
教师开导:圆在日常生活、生产实践及科学实验中,有着广泛的应用。上节课我们学习了圆的周长计算, 但仍不够,还要学会计算圆的面积。如计算一个雷达圆形屏幕的面积,一个圆形花圃的面积等。怎样才能算出 它的面积呢?(揭示、板书课题)。
2、创设情境。
教师用几张相等的圆纸片,运用折纸、剪纸的方法,分别折剪成正四边形、正八边形、正十六边形,然后 再分别与原来的图纸片叠在一起,见下图:
(附图 {图})
折四等份剪成 折八等份剪成 折十六等份剪成
正四边形 正八边形 正十六边形
引导学生观察、对比三个内接正多边形与圆的面积差(阴影部分)谁大谁小,并启发学生归结出:折成的 等份数越多,剪成的正多边形边数越多,它就越接近圆。其中正多边形的每等份(三角形)就越接近圆的每等 份。
3、推导公式。
师:同学们现在要计算圆的面积,选用哪种正多边形为好?为什么?
生[,1]:选正十六边形为好,因为它较接近圆。
生[,2]:选边数越多的`正多边形更好,因为它更接近圆。
师:回答得很好,根据现有的右图,怎样计算圆的面积呢?请大家思考以下问题:
(1)圆的面积相当于多少个三角形面积之和?
(2)这些三角形的底边之和相当于圆的什么?
(3)每个三角形的高相当于圆的什么?
学生边回答,教师边板书:
正十六边形的面积=S[,三角形]×16
↓
=底边×高÷2×16
=底边×16×高÷2
↓ ↓
圆的面积=2πr× r÷2
=πr[2]
最后让学生自学课本中的推导方法,质疑解难。进而教师小结:推导圆的面积公式与以前推导有关图形面 积公式一样,把圆转化为已学过的图形进行计算,同学们课后如有兴趣,还可将圆割拼为平行四边形、梯形, 看是否仍能推出S[,圆]=πr[2]。
〔评:这种教法具有以下几个特点:
1、导入新课开门见山,使学生感到学习圆的面积是实际中的需要,从而激发了学生的求知欲望。
2、在推导圆面积公式前,教师创设情境,让学生领悟隐含于直观演示中的初步“极限”思想,有助于发 展学生空间想象力和空间观念,从而为推导公式作好铺垫。这是前两种教法所不及的。
3、运用“整体-部分-整体”,分割求和的方法推导圆面积公式,新颖独特,学生易于接受,又以课本 中的方法及其他方法作验证,使学生加深理解,记忆牢固。
4、小结中能促使新知与原有认知结构中有关观念建立起联系,学生的学习是“有意义”的学习。
总评:教学圆面积公式的推导,要充分运用直观手段,引发学生积极思考,不仅使学生知其然,还要知其 所以然,要把教材本身的内在联系揭示出来,促使学生运用已学知识主动地去获取新知;既使学生“学会”, 又使学生“会学”,让他们在学习中同时学到科学的方法,提高学习能力,这样才能取得较好的教学效果。由 此可见,后两种教法是可取的,且教法三更佳。
《圆面积》试讲教案及反思
[教学目标]
1、使学生明确圆面积的概念;
2、使学生通过操作及课件的演示理解和掌握圆面积公式的推导方法;
3、使学生能够用圆的面积公式解决实际问题;
4、结合知识的学习,渗透转化的思想和极限的教学思想。
[教学重点和难点]
圆面积概念的建立;公式的推导及应用;转化和极限思想的渗透。
[教学准备]
学生:圆形纸板、剪刀、彩笔、三角板等学具。
教师:相应课件
[教学过程设计]
一、通过复习及“前导”明确概念
首先利用课件的“前导”演示,让学生直观感知 画圆留下的轨迹是条封闭的曲线;其次,在内填充颜色并分离,让学生明确:这条封闭的曲线长度是圆的周长;填充的部分是曲线围成的面是圆的面积。接着,让学生摸一摸手中圆形纸片的面积和周长,亲身体验一下。
【反思:圆的面积是在圆的周长和半径的基础上进行教学的,而周长和面积又是圆的两个基本概念,学生必须明确区分。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。】
二、通过设想及“演示”以旧促新
1、设想
师:我们认识了圆的面积,那么该如何计算圆的面积?该怎样发现和推导圆的面积公式呢?你能否根据以前学过的平面图形面积计算公式的推导过程来设想一下怎样计算圆的面积吗?
生:DDDDDDDDDDD。
2、让学生讨论、交流,发表见解,然后根据学生的回答再通过课件的“演示”再现平行四边形、三角形、梯形面积公式的推导过程。分析、对比各个公式推导过程的共同点和不同点,给学生以视觉的刺激,使学生领会到把一个图形转化成已学过的图形,从而推导出这个图形面积的计算公式。
【反思:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的'知识储备,为新知的“再创造”做好知识的准备。】
三、动手操作及“演示”完成圆形的转变
1、师:通过上面的设想和演示知道了以前学过的平面图形的计算公式的推导是把该图形转化成以学过的图形,从而推导出这个图形的面积计算公式,那么你们能否按照老师的分法动手把你手中的学具―圆,分成8等份,剪开并合拼(随之出示“演示”中的把圆分成4等份的剪拼)
学生:小组合作动手摆一摆,把手中的圆的学具转化成学过的平面图形。
2、师:让学生观察它像什么图形?为什么说“像”平行四边形?
学生:发表自己的意见。
师:充分肯定学生的观察。
师:如果说8等份有点像,那么再来看看16等份会怎么样?(电脑演示16等份的圆,放在一起比较)哪个更像平行四边形? (学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的。)
师:引导学生闭上眼睛想象,如果分成32等份会怎么样?64等份呢?……
(电脑继续演示分成32等份的圆,64等份的圆的分割、拼合)
3、 电脑出示:把圆4、8、16、32等分的组合转化图。
让学生观察、比较、讨论充分发表自己的观察结果。
【反思:让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,完成另一个重要数学思想―极限思想的渗透。】
四、通过推想及“演示”得出公式
师:我们通过刚才的动手操作和电脑的演示,知道了一个圆经过等分与拼接能转化成一个长方形。请再次观察在拼接的过程中,图形的面积是否发生了变化?
生:DDDDDDDDD(使学生明确,在拼接的过程中,图形的面积没有发生变化,该圆的面积等于拼成的长方形的面积)
师:那么,在观察的过程中,你是否发现,这个长方形的长、宽与圆的什么有关系?有什么关系?将你的发现和同学们交流一下。
生:---------------------(使学生明确:这个近似长方形的长相当于圆周长的一半,即 = ;宽就是圆的半径r)
师:打出课件让学生进一步观察比较,验证自己的观察结果。
师:谁能根据我们的观察结果,推导出圆的面积公式?
生:(讨论、交流、发表见解)
教师根据学生的发言,随之打出课件“圆的面积计算公式:
s=πr
【反思:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去体验新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。】
五、实际应用
(教师逐一展示本组课件,让学生积极讨论、交流、发表各自的见解)
题一、已知一个圆的半径是5厘米,求这个圆的面积?(图)
题二、一个圆桌的直径是90厘米,请你算一算这个圆桌面的面积是多少?(图)
题三、一只要换底的圆形水桶,经师傅量得底面周长是81.64厘米,你能否帮助师傅计算一下至少用多少铁皮?(图)
总结:1、回顾圆面积的推导过程;
2、讨论并得出求圆面积应具备那些条件?
【反思:这组循序渐进的实际应用课件的展示,力求使学生掌握圆面积的计算公式,明确圆周
长公式与圆面积公式的内在联系,提高在生活和生产中需要用圆面积计算公式来解决实际问题
的能力,力求使学生在情景中建立空间观念。】
【教学目标】
1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。
2.能够利用公式进行简单的面积计算。
3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
【教、学具准备】
1.CAI课件;
2.把圆8等分、16等分和32等分的硬纸板若干个;
3.剪刀若干把。
【教学过程】
一、尝试转化,推导公式
1.确定“转化”的策略。
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?
预设:
引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2.尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)
请大家看屏幕(利用课件演示),老师先给大家一点提示。