人教版五年级《植树问题》教学设计优秀5篇

作为一名教职工,就有可能用到教学设计,借助教学设计可以提高教学效率和教学质量。一份好的教学设计是什么样子的呢?书痴者文必工,艺痴者技必良,本页是敬业的小编为大家整理的人教版五年级《植树问题》教学设计优秀5篇,欢迎参考,希望大家能够喜欢。

《植树问题》优秀教学设计 篇1

单元教学目标:

1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。

2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。

3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

教学时数:4课时

数学广角植树问题(一)

第一课时教学内容:

教科书第117页118页的例1、例2

教学目标:

1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生感悟分的段数与植树棵树之间的关系。

2、通过小组合作、交流、使学生能理解段数与植树棵树之间的规律。

3、通过实践活动激发热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。

教学重点、难点:

教具:

挂图、直尺

教学过程:

一、创设情境,引入课题

1、每位小朋友都有一双灵巧的小手,它不但会写字,画画、干活,在它里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手,请每一位学生高举起右手,并将五指伸直,关拢。

师:现在请每位小朋友将五指张开,数一数,张开后有几个空格?(4个)

师:在数学上,我们把这个空格叫间隔。刚才,我们把五指张开,有4个空格,也就是4个间隔。

2、举例说出生活中的间隔到处可见,比如:在马路边种树,每两棵树之间有一段距离,我们就把这一段距离叫做一个间隔,楼梯、锯木头等。

3、大家清楚地看到,5个手指之间有4个间隔,那么,将手指换成小树,5棵小树之间有几个间隔(4个),6棵呢?7棵呢?

今天,我们就来学习有趣的植树问题。

(一)出示:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

1)同桌相互讨论。

2)有线段图表示你的方法

3)学生汇报

4)引导总结:

两端要栽的时候,比较间隔数和棵数,你得出什么规律?(生:棵树比间隔数多1)

你能用一个式子表示两端都栽的棵数和间隔数的关系吗?

板书:棵数=间隔数+1

5)在线段图上,又有怎样的关系呢?

点数=间隔数+1

6)这个问题应是:1005=20(个)间隔数

20+1=21(棵)棵数

巩固练习

(一)书第118页的做一做独立完成,指名反馈。

(二)出示:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?

1)读题,理解题。

2)分组看图讨论。

3)尝试列式计算。

4)交流:603=200间隔数

两端不栽树:20-1=19(棵)

192=38(棵)

5)质疑:

为什么减1?为什么乘2?

比较例1与例2的不同?小组讨论,再交流

例1两端要栽树,所以棵数比间隔大1:例2两端不栽树,所以棵数比间隔少1。

巩固练习二:

教科书第119页做一做1、2题

学生独立完成,集体反馈。

三、本课小结:

通过今天的学习,你有什么收获?

植树问题教学设计 篇2

教学目标:

1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

一、谈话引入,明确课题

母亲节刚过,我们马上又要迎来一个快乐的节日──“六·一儿童节”,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)

大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)

二、引导探究,发现“两端要种”的规律

1.创设情境,提出问题。

①课件出示图片。

介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?

出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?

②理解题意。

a、指名读题,从题中你了解到了哪些信息?

b、理解“两端”是什么意思?

指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?

说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。

③算一算,一共需要多少棵树苗?

④反馈答案。

方法一:1000÷5=200(棵)

方法二:1000÷5=200(棵)200 +2=202(棵)

方法三:1000÷5=200(棵)200 +1=201(棵)

师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?

2、简单验证,发现规律。

①画图实际种一种。

课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去……

师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)

师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?

②画一画,简单验证,发现规律。

a、先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段4棵)

b、跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段6棵)

c、任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?

(板书:2段3棵;7段8棵;10段11棵。)

d、你发现了什么?

小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:

(板书:两端要种:棵树=段数+1)

③应用规律,解决问题。

a、课件出示:前面例题

问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?

1000÷5=200这里的200指什么?

200 +1=201为什么还要+1?

师:这个“秘方”好不好?

通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?

b、解决实际问题

运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)

问:这道题是不是应用植树问题的规律解决的?

师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?

三、合作探究,“两端不种”的规律

1.猜测“两端不种”的规律。

猜测结果是:两端不种:棵树=段数-1

师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。

要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?

2.独立探究,合作交流。

3.展示小组研究成果,发现规律,验证前面的猜测。

小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?

4.做一做。

①在一条长2000米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)

②师:同学们注意看,这道题发生了什么变化?

课件闪烁:将“一侧”改为“两侧”

问:“两侧种树”是什么意思?实际要种几行树?会做吗?赶紧做一做。

小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。

四、回归生活,实际应用

1.一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)

8÷2=4(段)

4—1=3(次)

问:为什么要—1?这相当于今天学习的植树问题中的那种情况?

2.我们身边类似的数学问题。

①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?

②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?

3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?

五、全课总结

通过今天的学习,你有哪些收获?

师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。

“植树问题”说课

“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:

1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

2.学生经历和体验“复杂问题简单化”的解题策略和方法。

3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

本课教学分四大环节:

一、谈话导入,明确课题

二、引导探究,发现“两端要种”的规律

1.创设情境,提出问题。

通过创设在公路中间绿化带中植树的现实问题情境,提出“共需多少棵树苗的问题”。学生在解答的过程中出现了三种不同的答案,到底哪种答案对呢?引导学生通过画图实际种一种去检验。通过模拟种学生体验到一棵一棵种到1000米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。(说明:为了使学生对复杂问题简单化的思想体验得更深刻,教材原题是在100米的小路的一侧植树我们将100米改为了1000米。)

2.简单验证,发现规律。

在举简单例子画一画这个环节,安排了两个小层次:

①按老师要求画。

②学生任意画。

通过按老师要求画,学生对棵树和段数的关系已有了一定的感性认识。然后让学生再任意画一画,种一种,更丰富了学生的感性材料,为学生顺利发现并总结规律打下了基础。

3.应用规律,解决问题。

①应用规律,验证前面例题哪个答案是正确的。

②应用规律,解决插多少面小旗的问题。

这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。

三、合作探究“两端不种”的规律

1.猜测“两端不种”的规律。

猜测是一种培养学生推理能力的好方法。学生已经发现了“两端要种”的规律,这时候老师提出如果两端不种,棵数和段数又会有怎样的规律呢?有了前面的学习基础,学生的思维非常活跃,想表达的欲望也很强烈。所以这时候让学生进行猜测是很有必要的,通过验证证明绝大多数同学的猜测是正确的,这样学生的研究成果被认可使学生会有一种成就感,从而也更增强了学生学习数学的信心。

2.独立操作,探究规律。

有了前面的学习基础,放手让学生先独立探究再合作交流,通过简单的例子验证前面的猜测,发现两端不种的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。

四、回归生活,实际应用

设计了三道题:锯木头、算第一个同学和最后一个同学的距离以及对算距离问题的进一步巩固。通过解决生活中的问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。

《植树问题》教案 篇3

教学目标:

1、建立并理解在线段上植树(两端都不栽)的情况中“棵数=间隔数—1”的数学模型。

2、通过画线段图初步培养学生探索解决问题的有效方法的能力,尝试用植树问题的模型解决实际生活中的简单问题,培养应用意识。

教学重点:

建立并理解“棵数=间隔数—1”的数学模型。教学难点:培养学生探索解决问题的有效方法的`能力。

教学准备:

课件。

教学过程:

一、创设情境,导入新课:

师:同学们,你们参加过招聘会吗?

生:没有。

师:想不想拥有这样一次经历?

生:想。

师:瞧,老师带来了一份招聘启示。(课件演示)

招聘启示:

新兴学校将对校园进一步绿化,特聘请校园设计师一名。要求设计植树方案一份,择优录取。

师:愿意试试吗?我们先来看看设计有什么要求。(课件演示)

为了美化环境,要在的一条60米长的小路一边植树,每隔3米栽一棵,需要准备多少棵树苗呢?。

说一说,你们打算怎样植树?

师:哪位同学愿意来说说你的想法?

学生汇报讨论结果

生1:两端都栽。

生2:头栽尾不栽。

生3:尾栽头不栽。

生4:两端都不栽。

师:从这份要求上,你能获得哪些信息?

生:路全长有60米,只在路的一边栽,每隔5米栽一棵。

师:两端都栽要栽多少棵?这节课我们来研究两端不栽的植树问题。

二、民主导学:

任务呈现:

大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3m。一共要栽多少棵树?

1、你都知道了什么?

2、� 展示交流:

师:大家发现棵数和间隔数有什么关系?间距、间隔数和总长有什么关系?

生:棵数=间隔数—1

间距×间隔数=总长

讨论:在两头都不种的情况下,棵数为什么会比间隔数少1呢?师:那大象馆和猴山间栽多少棵数?

60÷3=20(个)

20—1=19(棵)

19×2=38(棵)

教师追问:为什么要“×2”?(因为小路两旁都要栽树)

师:大家在做题的时候,一定要判断是“两端要栽”还是“两端不栽”。

三、检测导结:

师:在刚才的学习过程中,同学们既发现了规律,又总结了方法,真了不起。老师这里有几道题,把明明难住了,我们来帮帮他。

1、目标检测:

一、填一填

1、一排同学之间有7个间隔,第一排有()个同学。

2、小红住的楼房每上一层要走20个台阶,从二楼到四楼要走()个台阶。

二、算一算

1、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米,一共有几个车站?

2、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵有多少米?

3、一根木头长10米,要 www.jingyou.net 把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

2、结果反馈:

3、反思总结:

师:通过今天的学习,大家有哪些收获?

学生畅谈收获。

师:同学们的收获真不少!通过今天的学习,我们不仅发现了植树问题中两端都栽和两端不栽的规律,而且还学会了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的问题还有一端栽一端不栽,下节课继续研究!

植树问题教学设计 篇4

教材内容:

人教版五年级上册数学广角植树问题P106页例1

教学目标:

1、通过猜测、验证等数学探究活动,使学生发现一条线段上两端都栽的植树问题的规律,构建数学模型,解决实际生活中的问题。

2、培养学生通过“化繁为简”从简单问题中探索规律找出解决问题方法的能力,初步培养学生的模型思想和化归思想。

3、通过合作交流,感受数学在生活中的的应用,体验学习成功的乐趣。

教学重点:运用数形结合、一一对应建构植树问题模型,并灵活地解决植树问题。

教学难点:“一一对应思想”的运用

教学准备:课件、10根小棒、尺子、白纸等。

【教学过程】:

一、创设情境引入

1、师:今天张老师和大家一起学习,你们欢迎吗?怎么欢迎?(学生鼓掌)

师:手不但能表示情感,还藏着数学奥秘呢!伸开你的右手,你找到了数字几?

生:5

师:5是什么?

生:5个手指

师:就是手指数,那还能发现哪个数?

生:4个空隙

师:你能指给大家看看吗?

师:像这样每两个手指之间的空隙,在数学上叫做间隔。(板书:间隔)

师: 4根手指几个间隔?三根呢?

2、找一找生活中还有哪些间隔现象?(课件出示)今天我们就一起来研究与间隔有关的一类有趣的数学问题:植树问题。(板书课题)

二、发现规律

1、课件出示:同学们要在全长500米长的小路的一边植树,每隔5米栽一棵树。(两端都栽)一共要栽多少棵数?

(1)你获得了哪些数学信息?问题是什么?“一边”“每隔5米”、“两端都栽”什么意思?(解释“一边”、“500米”是全长和“每隔5米”是间距)

(2)那么我们需要种多少棵树呢?

(3)请同学猜一猜、算一算

预设:100÷5=20? 100÷5+1=21? 100÷5-1=19

(4)引导验证:现在有不同的猜想,到底谁的对呢?怎么办?我们能不能想一个办法验证呢?如果我们画图来验证,你觉得好不好?(太麻烦)

三、建立数学模型

1、化繁为简

师:我们可以先从简单数据开始研究。我们可以把这里的总长500米改成5米、10米、15米20米、30米,请你选一个来摆一摆、画一画,数一数、找一找规律验证下吧。

出示活动要求:

(1) 结合生活情境,独立用学具摆一摆,也可以用画一画、找一找、算一算的办法研究两端都栽的情况下,棵数与间隔数的关系,有困难的同学也可以同桌合作。

(2) 完成后,在小组内说一说你的想法。

2、全班交流,完成表格。

3、引导总结规律,完成板书:

小结:1棵树对应1个间隔,最后一棵对应的间隔没有了,棵数比间隔数多1。你再仔细观察,还有什么新发现?

板书:两端都栽:全长÷间隔长=间隔数

间隔数+1=棵树

棵数-1=间隔树

师:如果老师下面空格里的全长填上40米,那么你能不画图列式得出答案吗?100米呢?

预设:40÷5=8? 8+1=9(解释8表示间隔数)

4、回归应用

(1)师:那回到原来的题目全长改成500米,会算吗?那么我把数字再放大变成1000米,怎么做?

(2)全长10000米,每隔10米种一棵(两端都种),要种多少棵?

5、小结:其实今天的学习我们用了一个非常重要的学习方法,(板书:以小见大或化繁为简)也就是像这样遇到数据比较大或比较繁琐的问题时我们可以用一些小数据、一个简单的草图找到规律来解决。

四、联系生活,解决问题

1、出示:为美化校园环境,建安小学准备在一条长10米的小路两旁,每隔2米放一盆花,(两端都放)一共可放多少盆花?

学生审题后独立完成。

交流提问:这个问题也是植树问题吗?为什么?生活中还有类似的问题吗?

师:这些树、花盆、小旗等都可以用点来表示,植树问题就是研究这些点和间隔关系的问题。

2、路的一边从头到尾摆了6盆花,如果每两盆花之间在插一面小旗,一边能插几面小旗?两边呢?

3、同学们排成一队去参观,从头到尾一共12人,每两个人之间的距离是2米,那么这列队伍长是多少米?

五、课堂总结:

这节课学了什么?有什么收获?

六、拓展延伸:

出示30米,每隔5米两端都种,学生读题。出示房子,师:现在还是两端都种吗?

预设:只种了一端

师:现在间隔数和棵数有什么关系呢?

再出示一个房子,师:现在还是只种一端吗?

预设:两端都不种

师:那间隔数和棵数又有什么关系呢?同学们下课以后可以用我们今天学到的方法研究一下。

板书设计:

植树问题

:两端都栽: 全长÷间隔长=间隔数

间隔数+1=棵树

棵数-1=间隔树

《植树问题》优秀教学设计 篇5

【教学背景】“植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。

【教学内容】数学广角(一):两端都栽、只栽一端、两端都不栽的植树问题,教材第117至119页例1、例2及相应的“做一做”。

【教学目标】

知识与技能:通过观察、操作及交流活动,探索并认识不封闭线路上间隔排列中的简单规律,并能将这种认识应用到解决类似的实际问题之中。培养学生观察能力、操作能力以及与他人合作的能力。

过程与方法:主要让学生通过观察、操作、交流等活动探索新知。

情感、态度与价值观:在解决问题的过程中,感受数学与现实生活的密切联系。

【教学重、难点】引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。

【教学准备】课件、

一、创设情境,揭示课题。

1、教师出示几幅有关北方沙尘暴的图片,引出植树的话题。

学生看完视频和照片说一说有什么感受?

治理沙尘暴最有效的办法是植树造林。你们看,我们学校的学生家长和老师,都积极投身到植树造林的活动中。看到这一排排整齐的小树,如果我们从数学的角度来分析,这里面还有很多有趣的数学问题。这节课我们就来研究——植树中的数学问题。(板书课题:植树中的数学问题)

【设计意图:通过播放沙尘暴视频及照片,让学生深刻体验到数学问题来源于生活,激发学生的学习兴趣,及时渗透环保教育】

二、引导探究,发现规律。

(出示情境)为了绿化校园,学校要在一条全长20米的小路一边种树。每隔5米植一棵。想一想,要植多少棵树?(学生自由读题)

(1)理解什么是每隔5米植一棵?下一棵怎么栽?

(2)介绍什么是一个间隔?学生指一指每一个间隔。

(3)教师出示学具分析题,学生可以借助学具摆一摆再列算式算一算。(学生小组合作动手操作)

【设计意图:把课本中的例1在100米长的路上种树,改为在20米长的路上种树。这样降低了探究的难度,便于学生观察、思考。同时通过情境图和开放性的提问,为下一环节的探究作好准备。】

①组织反馈交流

师:你给大家介绍一下你是怎么想的?(学生可能只出现只植两端)教师及时引导在我们实际植树活动中会遇到什么情况?

可能会遇到建筑物,遇到建筑物怎么了?植不了树了,可能会在哪些地方遇到建筑物?看来不仅有这一种植法,还有其他可能,请同学们再动手摆一摆算一算。(学生继续操作)

②学生汇报其他两种植法。

学生说一说自己的方法,在哪里遇到建筑物,植了几棵树?

③比较三种植法有什么不同?(强调在20米的小路一边间隔是5米植树只有这三种情况)并板书:两端都植、只植一段、两端都不植。

【设计意图:本环节先通过想象提问,为学生如何去探究起到提示作用。接着采取较开放的形式,自主确定每棵之间长度,通过对每一种方案动手摆一摆,列式计算,初步感知每种方案的计算方法。再接着让学生观察每一种方案,使学生从中得出,虽然确定的每棵之间长度不同,而计算方法是相同的。最后教师又让学生想象、观察,针对实际背景的不同,应选择相应的种树方案。整个环节在教师的积极引领下,充分突出了学生的主动参与,使学生经历了在操作中思考,在观察中比较,在交流中评价概括。】

(4)理解三种不同的植法中为什么都有20÷5=4这个算式?(学生说一说并上来指一指4在哪里?)

20÷5=4原来都是在算有几个间隔数。强调虽然植法不同但他们的间隔数却都相等,都有这样的4个间隔。

【设计意图:学生通过数形结合理解在植树问题中,求出间隔数非常关键。】

(5)理解4个间隔加1为什么等于5棵树?介绍一一对应的数学思想。

学生先想一想,再一起来看一看。

重点强调:1棵树对于1个间隔,1棵树对于1个间隔,4棵树就对应了4个间隔,最后1棵树没有对应的间隔就多了1棵树,所以是4棵树加1棵树等于5棵树。

找一学生再来说一说,同桌两人说一说。

(6)学生独立尝试借助一一对应的数学思想解决另外两种植法。

【设计意图:让学生体会一一对应的思想,并深入去理解其他两种植法中也蕴含的一一对应思想,把一一对应的思想与植树规律结合在一起,得出的规律就有水到渠成的效果很好地突破难点。】

小结:刚才我们在理解这几个算式时用到了一个重要的数学思想,叫做一一对应,一一对应的数学思想可以使复杂的数学问题变得非常简单。

(7)寻找三种不同的植法棵数与间隔数之间的关系。

观察这三种不同的植法,植的棵树和间隔数之间有这样的关系?你可以看图来想一想也可以借助算式来思考。同桌两人商量商量。

学生汇报,教师板书。

小结:通过刚才的学习我们知道了有这三种不同的。植法,但他们的间隔数都相等,看来在植树问题中求出间隔数非常重要,我们还知道了他们棵数与间隔数之间的关系,分别是两端都植是棵树等于间隔数加1,只植一端是棵树等于间隔数,两端都不植是棵树等于间隔数减1。你们学会了吗?老师来考考你。

【设计意图:新知结束后带着学生一起回顾所学的知识,如此设计是基于学生的思维状态,让学生对当堂课的知识和收获做一个回顾,就是学生整理知识思路、内化知识的过程,能起到画龙点睛的作用,更能培养学生的归纳能力。】

精讲精练:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端都要栽)。一共要栽多少棵?学生独立完成。

一键复制全文保存为WORD