初中数学教学设计【优秀15篇】

在初中数学学习中,老师会列出各种类型的中考考题进行反复练习,学生容易养成依赖老师、套用模型的习惯。问渠那得清如许,为有源头活水来,下面是敬业的小编给大伙儿找到的初中数学教学设计【优秀15篇】,希望对大家有所启发。

人教版初中数学教案大全 篇1

教学目标

1.知识与技能

能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

2.过程与方法

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

3.情感态度与价值观

培养学生主动探究、合作交流的意识,严谨治学的学习态度。

重、难点与关键

1.重点:去括号法则,准确应用法则将整式化简。

2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误。

3.关键:准确理解去括号法则。

教具准备

投影仪。

教学过程

一、新授

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

现在我们来看本章引言中的问题(3):

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为

100t+120(t-0.5)千米①

冻土地段与非冻土地段相差

100t-120(t-0.5)千米②

上面的式子①、②都带有括号,它们应如何化简?

思路点拨:教师引导,启发学生类比数的运算,利用分配律。学生练习、交流后,教师归纳:

利用分配律,可以去括号,合并同类项,得:

100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

我们知道,化简带有括号的整式,首先应先去括号。

上面两式去括号部分变形分别为:

+120(t-0.5)=+120t-60③

-120(t-0.5)=-120+60④

比较③、④两式,你能发现去括号时符号变化的规律吗?

思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:

如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).

利用分配律,可以将式子中的括号去掉,得:

+(x-3)=x-3(括号没了,括号内的每一项都没有变号)

-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)

去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项。

二、范例学习

例1.化简下列各式:

(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号。为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号。

解答过程按课本,可由学生口述,教师板书。

例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时。

(1)2小时后两船相距多远?

(2)2小时后甲船比乙船多航行多少千米?

教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路。

思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度。因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米。两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和。

解答过程按课本。

去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号。为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号。

三、巩固练习

1.课本第68页练习1、2题。

2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

思路点拨:一般地,先去小括号,再去中括号。

四、课堂小结

去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号。去括号规律可以简单记为“-”变“+”不变,要变全都变。当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项。

五、作业布置

1.课本第71页习题2.2第2、3、5、8题。

2.选用课时作业设计。

人教版初中数学教案 篇2

教学目标:

1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.

2.理解对顶角相等,并能运用它解决一些问题.

重点:

邻补角、对顶角的概念,对顶角的性质与应用.

难点:

理解对顶角相等的性质的探索.

教学过程:

一、创设情境,引入新课

引导语:

我们生活的世界中,蕴涵着大量的相交线和平行线.

本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.

二、尝试活动,探索新知

教师出示一块布片和一把剪刀,表演剪刀剪布的过程.

教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?

学生观察、思考、回答,得出:

握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大.

教师提问:我们可以把剪刀抽象成什么简单的图形?

学生回答:画成两条相交的直线,学生画直线AB、CD相交于点O,并说出图中4个角.

教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?

学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)

学生根据观察和度量完成下表:

两条直线相交、所形成的角、分类、位置关系、数量关系

教师提问:

如果改变∠AOC的大小,会改变它与其他角的位置关系和数量关系吗?

学生思考回答:

只会改变数量关系而不会改变位置关系.

师生共同定义邻补角、对顶角:

有一条公共边,而且另一边互为反向延长线的。两个角叫做邻补角.

如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.

教师提问:

你同意下列说法吗?如果错误,如何订正?

1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.

2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.

3.邻补角是互补的两个角,互补的两个角也是邻补角.

学生思考回答:1、2是对的,3是错的.

第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.

教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验.

教师把说理过程规范地板书:

在右图中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.

教师板书对顶角的性质:

对顶角相等.

强调对顶角的概念与对顶角的性质不能混淆:

对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.

三、例题讲解

【例】 如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

【答案】 由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.

四、巩固练习

1.判断下列图中是否存在对顶角.

2.按要求完成下列各题.

(1)两条直线相交,构成哪两种特殊位置关系的角?指出下图中具有这两种位置关系的角.

eq o(sup7(,图(1)) ,图(2))

(2)如图,若∠AOD= 90°,那么直线AB与CD的位置关系如何?

【答案】

1.都不存在对顶角.

2.(1)对顶角,邻补角.

对顶角:∠AOC和∠BOD,∠AOD和∠BOC.

邻补角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.

(2)垂直.

五、课堂小结

教师引导学生进行本节课的小结并强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.

教学反思

通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足,针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用。

人教版初中数学教师教案 篇3

应用二元一次方程组——鸡兔同笼

教学目标:

知识与技能目标:

通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题。初步体会解二元一次方程组的基本思想“消元”。

培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。

过程与方法目标:

经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。

情感态度与价值观目标:

1、进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识。

2、通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。重点:

经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。

难点:

确立等量关系,列出正确的二元一次方程组。

教学流程:

课前回顾

复习:列一元一次方程解应用题的一般步骤

情境引入

探究1:今有鸡兔同笼,

上有三十五头,

下有九十四足,

问鸡兔各几何?

“雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?

(1)画图法

用表示头,先画35个头

将所有头都看作鸡的,用表示腿,画出了70只腿

还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿

四条腿的是兔子(12只),两条腿的是鸡(23只)

(2)一元一次方程法:

鸡头+兔头=35

鸡脚+兔脚=94

设鸡有x只,则兔有(35-x)只,据题意得:

2x+4(35-x)=94

比算术法容易理解

想一想:那我们能不能用更简单的方法来解决这些问题呢?

回顾上节课学习过的二元一次方程,能不能解决这一问题?

(3)二元一次方程法

今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

(1)上有三十五头的意思是鸡、兔共有头35个,

下有九十四足的意思是鸡、兔共有脚94只。

(2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;

鸡足有2x只;兔足有4y只。

解:设笼中有鸡x只,有兔y只,由题意可得:

鸡兔合计头xy35足2x4y94

解此方程组得:

练习1:

1、设甲数为x,乙数为y,则“甲数的二倍与乙数的一半的和是15”,列出方程为_2x+05y=15

2、小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.

三、合作探究

探究2:以绳测井。若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺。绳长、井深各几何?

题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5尺;如果将绳子折成四等份,一份绳长比井深多1尺。问绳长、井深各是多少尺?

找出等量关系:

解:设绳长x尺,井深y尺,则由题意得

x=48

将x=48y=11。

所以绳长4811尺。

想一想:找出一种更简单的创新解法吗?

引导学生逐步得出更简单的方法:

找出等量关系:

(井深+5)×3=绳长

(井深+1

解:设绳长x尺,井深y尺,则由题意得

3(y+5)=x

4(y+1)=x

x=48

y=11

所以绳长48尺,井深11尺。

练习2:甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,则甲跑4秒就可追上乙。设甲速为x米/秒,乙速为y米/秒,则可列方程组为(B)。

归纳:

列二元一次方程解决实际问题的一般步骤:

审:审清题目中的等量关系。

设:设未知数。

列:根据等量关系,列出方程组。

解:解方程组,求出未知数。

答:检验所求出未知数是否符合题意,写出答案。

四、自主思考

探究3:用长方形和正方形纸板作侧面和底面,做成如图中竖式和横式的两种无盖纸盒。现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少只,恰好使库存的纸板用完?

解:设做竖式纸盒X个,横式纸盒y个。根据题意,得

x+2y=1000

4x+3y=2000

解这个方程组得x=200

y=400

答:设做竖式纸盒200个,横式纸盒400个,恰好使库存的纸板用完。

练习3:上题中如果改为库存正方形纸板500,长方形纸板1001张,那么,能否做成若干只竖式纸盒和若干只横式纸盒后,恰好把库存纸板用完?

解:设做竖式纸盒x个,做横式纸盒y个,根据题意

y不是自然数,不合题意,所以不可能做成若干个纸盒,恰好不库存的纸板用完。

归纳:

五、达标测评

1、解下列应用题

(1)买一些4分和8分的邮票,共花6元8角,已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?

解:设4分邮票x张,8分邮票y张,由题意得:

4x+8y=6800①

y-x=40②

所以,4分邮票540张,8分邮票580张

(2)一项工程,如果全是晴天,15天可以完成,倘若下雨,雨天一天只能完成晴天

的工作量。现在知道在施工期间雨天比晴天多3天。问这项工程要多少天才能完成

分析:由于工作总量未知,我们将其设为单位1

晴天一天可完成

雨天一天可完成

解:设晴天x天,雨天y天,工作总量为单位1,由题意得:

总天数:7+10=17

所以,共17天可完成任务

六、应用提高

学校买铅笔、圆珠笔和钢笔共232支,共花了300元。其中铅笔数量是圆珠笔的4倍。已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元。问三种笔各有多少支?

分析:铅笔数量+圆珠笔数量+钢笔数量=232

铅笔数量=圆珠笔数量×4

铅笔价格+圆珠笔价格+钢笔价格=300

解:设铅笔x支,圆珠笔y支,钢笔z支,根据题意,可得三元一次方程组:

将②代入①和③中,得二元一次方程组

4y+y+z=232④

0.6×4y+2.7x+6.3z=300⑤

解得

所以,铅笔175支,圆珠笔44支,钢笔12支

七、体验收获

1、解决鸡兔同笼问题

2、解决以绳测井问题

3、解应用题的一般步骤

七、布置作业

教材116页习题第2、3题。

x+y=35

2x+4y=94

x=23

y=12

绳长的三分之一-井深=5

绳长的四分之一-井深=1

-y=5①

①-②,得

-y=1②

-y=5①

-y=5①

-y=5①

X=540

Y=580

y-x=3②

x=7

y=10

x+y+z=232①

x=4y②

0.6x+2.7y+6.3z=300③

X=176

Y=44

Z=12

人教版初中数学教案 篇4

教学目标

1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

3.通过加法运算练习,培养学生的运算能力。

教学建议

(一)重点、难点分析

本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.

由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.

(二)知识结构

(三)教法建议

1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.

2.关于“去括号法则”,只要学生了解,并不要求追究所以然.

3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如

-3-4表示-3、-4两数的代数和,

-4+3表示-4、+3两数的代数和,

3+4表示3和+4的代数和

等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

4.先把正数与负数分别相加,可以使运算简便。

5.在交换加数的位置时,要连同前面的符号一起交换。如

12-5+7 应变成 12+7-5,而不能变成12-7+5。

教学设计示例一

有理数的加减混合运算(一)

一、素质教育目标

(一)知识教学点

1.了解:代数和的概念.

2.理解:有理数加减法可以互相转化.

3.应用:会进行加减混合运算.

(二)能力训练点

培养学生的口头表达能力及计算的准确能力.

(三)德育渗透点

通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.

(四)美育渗透点

学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.

二、学法引导

1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练

习,步步为营,分散难点,解决关键问题.

2.学生写法:练习→寻找简单的一般性的方法→练习巩固.

三、重点、难点、疑点及解决办法

1.重点:把加减混合运算算式理解为加法算式.

2.难点:把省略括号和的形式直接按有理数加法进行计算.

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、自制胶片.

六、师生互动活动设计

教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.

七、教学步骤

(一)创设情境,复习引入

师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目: -9+(+6);(-11)-7.

师:(1)读出这两个算式.

(2)“+、-”读作什么?是哪种符号?

“+、-”又读作什么?是什么符号?

学生活动:口答教师提出的问题.

师继续提问:(1)这两个题目运算结果是多少?

(2)(-11)-7这题你根据什么运算法则计算的?

学生活动:口答以上两题(教师订正).

师小结:减法往往通过转化成加法后来运算.

【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.

师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算.(板书课题2.7有理数的加减混合运算(1))

教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成.

(二)探索新知,讲授新课

1.讲评(-9)+(-6)-(-11)-7.

(1)省略括号和的形式

师:看到这个题你想怎样做?

学生活动:自己在练习本上计算.

教师针对学生所做的方法区别优劣.

【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算?这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法.

师:我们对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即:

原式=(-9)+(+6)+(+11)+(-7)

=-9+6+11-7.

提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成?

学生活动:先自己练习尝试用两种读法读,口答(教师纠正).

【教法说明】教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力.

巩固练习:(出示投影1)

1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来.

(1)(+9)-(+10)+(-2)-(-8)+3;

(2)+()-()-().

2.判断

式子-7+1-5-9的正确读法是().

A.负7、正1、负5、负9;

B.减7、加1、减5、减9;

C.负7、加1、负5、减9;

D.负7、加1、减5、减9;

学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答.

【教法说明】这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法.

2.用加法运算律计算出结果

师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数放在一起分别相加.

-9+6+11-7

=-9-7+6+11.

学生活动:按教师要求口答并读出结果.

巩固练习:(出示投影2)

填空:

1.-4+7-4=-______________-_______________+_______________

2.+6+9-15+3=_____________+_____________+_____________-_____________

3.-9-3+2-4=____________9____________3____________4____________2

4.____________________________________

学生活动:讨论后回答.

【教法说明】学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点.

师:-9-7+6+11怎样计算?

学生活动:口答

[板书]

-9-7+6+11

=-16+17

=1

巩固练习:(出示投影3)

1.计算(1)-1+2-3-4+5;

(2).

2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3;

(2).

学生活动:四个同学板演,其他同学在练习本上做.

【教法说明】针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中.

师小结:有理数加减法混合运算的题目的步骤为:

1.减法转化成加法;

2.省略加号括号;

3.运用加法交换律使同号两数分别相加;

4.按有理数加法法则计算.

(三)反馈练习

(出示投影4)

计算:(1)12-(-18)+(-7)-15;

(2).

学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的.

【教法说明】这两个题目是本节课的重点.采用测验的方式来达到及时反馈.

(四)归纳小结

师:1.怎样做加减混合运算题目?

2.省略括号和的形式的两种读法?

学生活动:口答.

【教法说明】小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统.

八、随堂练习

1.把下列各式写成省略括号的和的形式

(1)(-5)+(+7)-(-3)-(+1);

(2)10+(-8)-(+18)-(-5)+(+6).

2.说出式子-3+5-6+1的两种读法.

3.计算

(1)0-10-(-8)+(-2);

(2)-4.5+1.8-6.5+3-4;

(3).

九、布置作业

(一)必做题:1.计算:(1)-8+12-16-23;

(2);

(3)-40-28-(-19)+(-24)-(-32);

(4)-2.7+(-3.2)-(1.8)-2.2;

(二)选做题:(1)当时,,,哪个最大,哪个最小?

(2)当时,,,哪个最大,哪个最小?

十、板书设计

人教版初中数学教案大全 篇5

一元一次不等式组

教学目标

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;

2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

教学难点

正确分析实际问题中的不等关系,列出不等式组。

知识重点

建立不等式组解实际问题的数学模型。

探究实际问题

出示教科书第145页例2(略)

问:(1)你是怎样理解“不能完成任务”的数量含义的?

(2)你是怎样理解“提前完成任务”的数量含义的?

(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

师生一起讨论解决例2.

归纳小结

1、教科书146页“归纳”(略).

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

在讨论或议论的基础上老师揭示:

步法一致(设、列、解、答);本质有区别。(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

平行线的判定教案 篇6

、教学目标

1、了解推理、证明的格式,理解判定定理的证法。

2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。

3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。

4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。

二、学法引导

1、教师教法:启发式引导发现法。

2、学生学法:积极参与、主动发现、发展思维。

三、重点•难点及解决办法

(一)重点

判定定理的推导和例题的解答。

(二)难点

使用符号语言进行推理。

(三)解决办法

1、通过教师正确引导,学生积极思维,发现定理,解决重点。

2、通过教师指导,学生自行完成推理过程,解决难点及疑点。

四、课时安排

1课时

五、教具学具准备

三角板、投影仪、自制胶片。

六、师生互动活动设计

1、通过设计练习,复习基础,创造情境,引入新课。

2、通过教师指导,学生探索新知,练习巩固,完成新授。

3、通过学生自己总结完成小结。

七、教学步骤

(一)明确目标

掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力。

(二)整体感知

以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。

(三)教学过程

创设情境,复习引入

师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)。

学生活动:学生口答第1、2题。

师:你能说出有什么条件,就可以判定两条直线平行呢?

学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。

教师将第3题图形画在黑板上。

学生活动:学生口答理由,同角的补角相等。

师:要求学生写出符号推理过程,并板书。

【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行。第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点。

师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

学生活动:同分内角。

师:它们有什么关系。

学生活动:互补。

师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题。

人教版初中数学教案 篇7

问题描述:

初中数学教学案例

初中的,随便那个年级。20__字。案例和反思

1个回答 分类:数学 20__-11-30

问题解答:

我来补答

2.3 平行线的性质

一、教材分析:

本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章 第3节 平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。

二、教学目标:

知识与技能:掌握平行线的性质,能应用性质解决相关问题。

数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。

三、教学重、难点:

重点:平行线的性质

难点:“性质1”的探究过程

四、教学方法:

“引导发现法”与“动像探索法”

五、教具、学具:

教具:多媒体课件

学具:三角板、量角器。

六、教学媒体:大屏幕、实物投影

七、教学过程:

(一)创设情境,设疑激思:

1.播放一组幻灯片。内容:①火车行驶在铁轨上;②游泳池;③横格纸。

2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

学生活动:

思考回答。①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;

教师:首先肯定学生的回答,然后提出问题。

问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?

引出课题——平行线的性质。

(二)数形结合,探究性质

1.画图探究,归纳猜想

任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图).

问题一:指出图中的同位角,并度量这些角,把结果填入下表:

第一组

第二组

第三组

第四组

同位角

∠1

∠5

角的度数

数量关系

学生活动:画图——度量——填表——猜想

结论:两直线平行,同位角相等。

问题二:再画出一条截线d,看你的猜想结论是否仍然成立?

学生:探究、讨论,最后得出结论:仍然成立。

2.教师用《几何画板》课件验证猜想

3.性质1.两条直线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

(三)引申思考,培养创新

问题三:请判断内错角、同旁内角各有什么关系?

学生活动:独立探究——小组讨论——成果展示。

教师活动:引导学生说理。

因为a‖b 因为a‖b

所以∠1=∠2 所以∠1=∠2

又 ∠1=∠3 又 ∠1+∠4=180°

所以∠2=∠3 所以∠2+∠4=180°

语言叙述:

性质2 两条直线被第三条直线所截,内错角相等。

(两直线平行,内错角相等)

性质3 两条直线被第三条直线所截,同旁内角互补。

(两直线平行,同旁内角互补)

(四)实际应用,优势互补

1.(抢答)

(1)如图,平行线AB、CD被直线AE所截

①若∠1 = 110°,则∠2 = °.理由:.

②若∠1 = 110°,则∠3 = °.理由:.

③若∠1 = 110°,则∠4 = °.理由:.

(2)如图,由AB‖CD,可得( )

(A)∠1=∠2 (B)∠2=∠3

(C)∠1=∠4 (D)∠3=∠4

(3)如图,AB‖CD‖EF,

那么∠BAC+∠ACE+∠CEF=( )

(A) 180°(B)270° (C)360° (D)540°

(4)谁问谁答:如图,直线a‖b,

如:∠1=54°时,∠2= .

学生提问,并找出回答问题的同学。

2.(讨论解答)

如图是一块梯形铁片的残余部分,量得∠A=100°,

∠B=115°,求梯形另外两角分别是多少度?

(五)概括存储(小结)

1.平行线的性质1、2、3;

2.用“运动”的观点观察数学问题;

3.用数形结合的方法来解决问题。

(六)作业 第69页 2、4、7.

八、教学反思:

①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。

②学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。

③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

小学数学教案人教版 篇8

教学目标:

1、在实际情景中,理解路程、时间与速度之间的关系

2、根据路程、时间与速度的关系,解决生活中简单的问题

3、感受数学知识与生活的密切联系,树立生活中处处有数学的思想

教学重点:

根据路程、时间与速度的关系解决生活中的实际问题。

教学过程:

一、创设情境,激发学生的学习兴趣。

出示刘翔跑步图片

师:同学们,图中跑步的是谁呀?你们认识吗?(刘翔)

师:对了,这就是我们中国的飞人刘翔。

师:同学们,刘翔跑得怎么样?(很快)这里的快指的是刘翔的什么快?(速度) (出示成绩表)

师:从成绩单中,他们都跑的这110米是什么意思?(出示:路程)

那么他们的12.91秒,13.18 秒,13.20秒这些是什么?(出示:时间) 同学们,通过这个表格来看,为什么是刘翔赢了呢?(他用的时间最少) 师:(出示并观察这两个表格),那么通过刚才的两次比较,你发现速度的快慢与什么有关系?(时间、路程有关系)到底什么是速度?速度与路程和时间又有什

么关系?今天这节课就一起来研究(板书:路程 时间 与速度)

二、师生互动、探究新知。

1、师:刚才呀,咱们在比快慢的时候知道了如果路程相等的时候,谁用的时间少,谁就快。如果路程跟时间都不相同呢?怎么比快慢?下面请看这样一组信息: 小卡车2小时行驶了120千米,大客车3小时行驶了210千米,哪辆车跑的比较快?

(1)师:你们能从图中了解到哪些数学信息?

哪辆车跑的快些?你们能试着解决吗?

(2)你可以通过计算,也可以借着画线段图的方法来分析数量关系,解决问题,清楚了吗?做完后可以和同桌交流,开始

(3)汇报各自的解决办法。(指名板演)

(4)同学们比的都不错,那么刚才老师在巡视的过程中,发现同学们都没有用线段图,其实呀,画线段图可以帮助我们正确的理解数量关系,解决问题,那么怎么画线段图呢?你们想不想学习呀?

师:好,请看。我们先画一段线段,用它表示小卡车行驶的路程,小卡车行驶了多少千米呀?(在黑板上画下表示120千米的线段)

然后我们再画一条线段,用来表示大客车行驶的路程,那么在画的时候要注意左端对齐,那么同学们,跟这条线段相比,应该画多长呀?

强调:应该按照一定的比例适当的长些。

(黑板上画了210千米长的线段)

那么大客车行使了多少千米?(210千米 标上)

师:小卡车的120千米是多少时间行驶的?(生反馈:2小时)

师:那么怎么样在线段图上表示它1小时行驶的路程?

师:恩,在一半的位置来画,就是把线段怎么样?

师:平均的分成两半

(教师在黑板上分)那么这里的每一份表示小卡车1时行驶的路程,我们这样来表示。那么怎么样在线段图上表示大客车1时行驶的路程呢?

(在黑板上比划了不同的3段)可以吗?怎么分?一起说。

师:把它平均分成3份,同样,这是每一份表示大客车1时行驶的路程,同样,我们取这一段来表示。

(教师在黑板上分)那么从线段图上来看,哪辆车1时行驶的路程长? 师:大客车行驶的路程长。大客车就跑的快。

2、讲解速度的读法、写法

师:在刚才的比较过程中,我们无论是通过计算,还是通过画线段图,都是比较两辆车多长时间行驶的路程?

师:对了,他们每小时或1时行驶的路程就是他们的速度,那么像这样小卡车1小时行使了60千米,也就是小卡车的速度是60千米/时,

(板书60千米/时)这就是我们今天要学习的用来表示速度的单位,谁来说一说这个单位是是由哪些我们学过的单位组成的?

师:对,速度的单位是由路程单位和时间单位组成的,中间用斜线隔开。读作每60千米每时。(指名读)

你知道每小时60千米表示什么吗?

那么你能不能这样来表示出大客车的速度?在练习本上写一写(指名板演)

3、经历公式形成的过程。

师:很好,刚才呀,咱们求出了小卡车和大客车的速度,那么结合这个算式和线段图来看一看,速度和路程还有时间有什么样的关系?和你的伙伴交流交流。好,开始。

(汇报,结合120÷2=60(千米)来讲解。板书:速度=路程÷时间)让学生读一读。

4、理解单位时间,理解速度的意义。

同学们,那么通过这个关系式来看,如果要想求出速度的话,我们需要知道什么?(路程与时间)知道了相对应的路程和时间,我们就可以求出速度了。好,请同学们在下面小声的读题,然后口答下列各题中物体的速度,开始。 师:请写出下面各物体的速度

①一列火车2时行驶180千米,这列火车的速度是_________

②自行车3分钟行驶600米,这辆自行车的速度是_________

③一名运动员8秒跑了80米,这名运动员的速度是________

师:我们一起来看下这三个速度,它们分别是这些物体在多长时间内行驶的路程?

师:其实他们每时,每分,每秒行驶的路程就是他们的速度,我们把这样的像一时、一分、一秒…这样的时间叫做单位时间。你对速度是怎样理解的? 物体在单位时间(一时,一分,一秒…)内所行驶的路程,叫做速度。自己练习说一说。

5、经历公式形成的过程。

现在咱们知道了什么是速度,也知道了速度等于路程除以时间,那么同学们,时间该怎么求?路程又该怎么求呢?我们一起结合下面的问题来试一试。 (出示题目1)你能从中获得什么数学信息?

那么根据这些信息,你能解决这个问题吗?

你能说一说求路程的关系式是怎么样的?

时间=路程÷速度

路程=时间×速度

师:同学们太厉害了,通过这个关系式我们可以看出要想求出速度,就必须知道相对应的路程和? (时间)

师:那么求时间和求路程也是一样的,必须要知道相对应的另两个量,你看,路

程,时间和速度的关系是多么的密切呀。

三、实际运用

1、感受生活中的速度

师:速度不仅在咱们的课堂中有,在咱们的生活中也是无处不在的,咱们一起到生活中感受一下速度,好吗?读一读,感受一下。出示看一看图片 让学生看一看读一读。

2、解决问题

小红和小明约好到少年宫玩,如果她俩同时从家里出发,谁会先到达少年宫呢?

(出示 只有距离没有其它条件的题目)

师:那么同学们,你说如果看路程的话,能不能确定谁先到少年宫? 师:还需要知道什么?

人教版四年级数学教案

一年级数学教案人教版 篇9

教学目标:

1、结合问题情境,理解和掌握小数进、退位的加减法。

2、能运用本课所学的知识,解决简单的实际问题。

教学重难点:

理解、掌握小数进退位的加减法。

教学准备:

课件、星星。

二、说教法与学法

数学家波利亚说过:学习任何知识的途径,都是自己去发现。学习学习知识是接受的过程更是发现、探索的过程。的教法是引导学生自己去发现、主动去探索。本节课紧密联系学生的生活实际,从学生的生活经验和已有知识出发,让学生在生活情境中发现数学问题,运用所学知识探索解决问题的策略,让学生体验到数学算法的多样化,发展其作出决策的能力。并通过小组讨论,把所学的知识点进行归纳总结。体现了“小课堂,大社会”的课堂教学理念。

三、说教学流程

(一)创设情境,旧知铺垫

1.师:今天数学游乐园开张了。老师准备带大家一起去游一游。只要大家答对门口的几道题,就可以免费进去了,你们有信心吗?

2.课件出示情境:

0.24+0.1 0.82-0.32 1.54+2.3 9.88-4.32

售票员阿姨:“只要小朋友能准确地计算出得数,不管用什么方法都可以。

3.师引导:可以口算,可以列竖式计算、还可以请教别人,等等。

4.学生计算后、汇报结果。

(华裔诺贝尔物理学获奖者崔琦先生说过:“喜欢和好奇心比什么都重要。”针对学生的喜欢和好奇心,以游乐园的情境贯穿于各个教学环节,激发了学生学习的兴趣。本环节目的是激活学生学习本课所需的知识,选择不同算法,关注学生的个别差异,特别给予后进生再次学习的机会。)

(二)提出问题

1、问题情境

师:大家计算得真准确!我们可以进去数学游乐园喽!你们瞧,游乐园里真乐闹啊!大象伯伯在那里给大家量体重,我们去看看!哦,有三位小朋友量出来的体重是……(课件出示游乐园情境图)

笑笑 38千克

淘气 45.2千克

丁丁 33.4千克

2、大象伯伯要考考你们:你能不能根据图上的信息,提出一个问题呢?

3、学生提出问题,教师从中选择出本节课将解决的问题:(退位减法)

(1)淘气比丁丁重多少千克?

(2)丁丁比笑笑轻多少千克?

(从学生熟悉的生活情境中提出问题,让学生充分感受到生活中处处有数学,数学与我们的生活紧密相联。在潜移默化中培养学生用数学的角度观察生活中的事物。)

三、探索算法

(1)淘气比丁丁重多少千克?

1、学生列出算式:45.2-33.4=2、师:请小朋友们开动脑筋,把得数算出来。

2、学生独立探究算法。

3、全班交流:生1:我算出得数是11.8。

(师追问:你是怎么算出来的呢?)

生1:我先算出452-334=118,那么45.2-33.4就等于11.8。

师:很好,不过这种算法的前提是小数的位数相同。

生2:我是把这道题想成钱来算的。我先从45.2元里面拿出33元……

师:你能把生活经验用在这里解决算术问题真不错。

生3:我能用列竖式的方法来算。

师:你的算法很特别,能不能上台来跟同学们说说你是怎么算的。

生3:(一边板书,一边讲)我把先45.2写在上面,33.4写在下面,要注意小数点对齐,然后2减4不够减,找前一位借1,变成12-4=8,……最后算出来的得数是11.8

师:谢谢你。

师:你们觉得哪一种方法计算起来更方便呢?

(列竖式)

师:那好,我们就用列竖式的方法计算第二个问题。

(新知识只有通过学生的主动参与,自行探索,才能转化为学生的知识,才能培养学生的创造性思维能力。本环节让学生从具体的问题出发,主动参与,探究小数退位减法的竖式计算方法,体现了学生学习的主体性,而且有效的保持学生学习兴趣。在师生交流过程中,学生感受到数学算法的多样化,并且学会优化选择。)

(2)丁丁比笑笑轻多少千克?

(课件出示问题及智慧爷爷说的话“小数末尾添上‘0’或去掉‘0’,小数大小不变。”)

1、学生独立计算,教师巡视指导。

2、请2位学生板演。

3、引导学生评价。

(课件出示情境)

4、师:数学游乐园里还有个小朋友晶晶还不明白,我们一起来帮帮他。

5、小组讨论:列竖式计算要注意什么?不够减时怎么办?如果碰到整数怎么办?

6、分组讨论,并做好记录。

7、汇报交流。(强调智慧爷爷说的话)

8、师小结:计算小数退位减法时,小数点要对齐,不够减时要向前一位借一。小数末尾添上“0”或去掉“0”,小数大小不变。

(教师通过课件进行板书。)

(通过小组讨论,促进生生互动,发展学生合作交流的能力和归纳、概括数学知识的能力。)

四、巩固和应用

“有奖解答”

1、师:小朋友们都学好了本领,接来老师要带大家去参加游乐园的“有奖解答”活动,看谁获得的奖品最多?

2、P16第一题。

(课件出示)

(1)看谁算得最准确。

8.25

+1.55

-

7.3

-2.25

-

10

- 2.45

-

教师着重引导小数进位加法的计算问题。

小结:计算小数进位加法时,小数点要对齐,满十要向前一位进一。

3、P16第二题。

新学期开学了,笑笑到商店买了1个书包和1个文具盒,笑笑一共花了多少元?

名称 单价/元

书包 32.50

文具盒 7.60

4、分发奖品。(星星——贴在光荣榜)

(在“有奖解答”的具体情境中,学生既巩固新知,同时又引出了小数进位加法的计算问题。给予学生自主学习的空间) 第九文书网

五、总 结 回 顾

1、师:我们今天的游园活动到这里就结束了,你愿意把今天的收获和大象伯伯分享吗?

2、学生谈收获。

3、师总结:这就是我们所今天学习的——小数进、退位的加减法。相信以后遇到小数加减法的问题,应该难不倒你们了。

(让学生分享收获,体现了 “反思”的思想,使学生学会总结,深化认识,把所学知识变成自己内在的东西

元一次方程组的解法—代入法教案 篇10

教学内容:人教版七年级数学下册第八章二元一次方程组第2节P96页

教学目标

(1)基础知识与技能目标:会用代入消元法解简单的二元一次方程组。

(2)过程与方法目标:经历探索代入消元法解二元一次方程的过程,理解代入消元法的基本思想所体现的化归思想方法。

(3)情感、态度与价值观目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识。

教学重、难点关键

教学重点:用代入消元法解二元一次方程组

教学难点:探索如何用代入消元法解二元一次方程组,感受“消元”思想。

教学关键:把方程组中的某个方程变形,而后代入另一个方程中去,消去一个未知数,转化成一元一次方程。学生分析授课对象为少数民族地区的七年级学生,基础知识薄弱,特别是对一元一次方程内容掌握的不够透彻,再加上厌学现象严峻,团结协作的能力差,本节课设计了他们感兴趣的篮球比赛和常用的消毒液作为题材来研究二元一次方程组,既能调动他们的学习兴趣,又能解决本节课所涉及到的问题,为以后的进一步学习二元一次方程组做好铺垫。

教学内容分析:本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。通过实际问题中二元一次方程组的应用,进一步增强学生学习数学、用数学的意识,体会学数学的价值和意义。初中阶段要掌握的二元一次方程组的消元解法有代入消元法和加减消元法两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排较少,不过这样也给了学生一较大的发挥空间。

教具准备教师准备:ppt多媒体课件投影仪

教学方法本节课采用“问题引入——探究解法——归纳反思”的教学方法,坚持启发式教学。

教学过程

(一)创设情境,导入新课篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,保安族中学校队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

(二)合作交流,探究新知第一步,初步了解代入法1、在上述问题中,除了用一元一次方程解答外,我们还可以设出两个未知数,列出二元一次方程组学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演①设胜的场数是x,负的场数是y

x+y=22

2x+y=40

②设胜的场数是x,则负的场数为22-x

2x+(22-x)=40

2、自主探究,小组讨论那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?

3、学生归纳,教师作补充上面的解法,第一步是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

第二步,用代入法解方程组把下列方程写成用含x的式子表示y的形式(1)2x-y=5(2)4x+3y-1=0学生活动:尝试自主完成,教师纠正思考:能否用含y的式子来表示x呢?

例1用代入法解方程组x-y=3①3x-8y=14②

思路点拨:先观察这个方程组中哪一项系数较小,发现①中x的系数为1,这样可以确定消x较简单,首先用含y的代数式表示x,而后再代入②消元。

解:由①变形得X=y+3③

把③代入②,得3(y+3)-8y=14

解这个方程,得y=-1

把y=-1代入③,得X=2

所以这个方程组的解是X=2y=-1

如何检验得到的结果是否正确?学生活动:口答检验。

第三步,在实际生活中应用代入法解方程组

例2根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?思路点拨:本题是实际应用问题,可采用二元一次方程组为工具求解,这就需要构建模型,寻找两个等量关系,从题意可知:大瓶数:小瓶数=2:5;大瓶所装消毒液+小瓶所装消毒液=总生产量(解题过程略)教师活动:启发引导学生构建二元一次方程组的模型。学生活动:尝试设出:这些消毒液应该分装x个大瓶和y个小瓶,得到5x=2y500x+250y=22500000并解出x=20000y=50000

第四步,小组讨论,得出步骤学生活动:根据例1、例2的解题过程,你们能不能归纳一下用代入法解二元一次方程组的步骤呢?小组讨论一下。学生归纳,教师补充,总结出代入法解二元一次方程组的步骤:①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的。);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

(三)分组比赛,巩固新知为了激发学生的兴趣,巩固所学的知识,我把全班分成4个小组,把书本P98页练习设计成必答题、抢答题和风险题几个集知识性、趣味性于一体的独立版块,练习是由易到难、由浅到深,以小组比赛的形式呈现出来,这样既提高了学生的积极性,培养了团队精神,也使各类学生的能力都得到不同的发展。

(四)归纳总结,知识回顾1、通过这节课的学习活动,你有什么收获?2、你认为在运用代入法解二元一次方程组时,应注意什么问题?

(五)布置作业1、作业:P103页第1、2、4题2、思考:提出在日常生活中可以利用二元一次方程组来解决的实际问题。设计说明代入消元法体现了数学学习中“化未知为已知”的化归思想方法,化归的原则就是将不熟悉的问题化归为比较熟悉的问题,用于解决新问题。基于这点认识,本课按照“身边的数学问题引入—寻求一元一次方程的解法—探索二元一次方程组的代入消元法—典型例题—归纳代入法的一般步骤”的思路进行设计。在教学过程中,充分调动学生的主观能动性和发挥教师的主导作用,坚持启发式教学。教师创设有趣的情境,引发学生自觉参与学习活动的积极性,使知识发现过程融于有趣的活动中。重视知识的发生过程。将设未知数列一元一次方程的求解过程与二元一次方程组相比较,从而得到二元一次方程组的代入(消元)解法,这种比较,可使学生在复习旧知识的同时,使新知识得以掌握,这对于学生体会新知识的产生和形成过程是十分重要的。

人教版初中数学教案通用 篇11

教学目标

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;

2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

教学难点

正确分析实际问题中的不等关系,列出不等式组。

知识重点

建立不等式组解实际问题的数学模型。

探究实际问题

出示教科书第145页例2(略)

问:

(1)你是怎样理解“不能完成任务”的数量含义的?

(2)你是怎样理解“提前完成任务”的数量含义的?

(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

师生一起讨论解决例2.

归纳小结

1、教科书146页“归纳”(略).

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

在讨论或议论的基础上老师揭示:

步法一致(设、列、解、答);本质有区别。(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

有理数的大小比较 教案 篇12

一、背景知识

《有理数的大小比较》选自浙江版《义务教育课程标准实验教科书数学七年级(上册)》第一章《从自然数到有理数》的第5节,有理数大小比较的提出是从学生生活熟悉的情境入手,借助于气温的高低及数轴,得出有理数的大小比较方法。课本安排了"做一做"等形式多样的教学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程。

二、教学目标

1、使学生能说出有理数大小的比较法则

2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。

3、能正确运用符号"<"">""∵""∴"写出表示推理过程中简单的因果关系。

三、教学重点与难点

重点:运用法则借助数轴比较两个有理数的大小。

难点:利用绝对值概念比较两个负分数的大小。

四、教学准备

多媒体课件

五、教学设计

(一)交流对话,探究新知

1、说一说

(多媒体显示)某一天我们5个城市的最低气温    从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。

比较这一天下列两个城市间最低气温的高低(填"高于"或"低于")

广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。

2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?

(3)温度的高低与相应的数在数轴上的位置有什么?

(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:

在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于零,负数都小于零,正数大于负数。

(二)应用新知,体验成功

1、练一练(师生共同完成例1后,学生完成随堂练习1)

例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用"<"号连接。(师生共同完成)

分析:本题意有几层含义?应分几步?

要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。

随堂练习: P19 T1

2、做一做

(1)在数轴上表示下列各对数,并比较它们的大小

①2和7   ②-6和-1  ③-6和-36  ④-和-1.5

(2)求出图中各对数的绝对值,并比较它们的大小。

(3)由①、②从中你发现了什么?

(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)

要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。

在学生讨论的基础上,由学生总结得出有理数大小的比较法则。

(1)正数都大于零,负数都小于零,正数大于负数。

(2)两个正数比较大小,绝对值大的数大。

(3)两个负数比较大小,绝对值大的数反而小。

3、师生共同完成例2后,学生完成随堂练习2、3、4。

例2比较下列每对数的大小,并说明理由:(师生共同完成)

(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|

分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。

注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。

两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。

思考:还有别的方法吗?(分组讨论,积极思考)

4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?

由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。

练一练:P19 T2、3、4

5、考考你:请你回答下列问题:

(1)有没有的有理数,有没有最小的有理数,为什么?

(2)有没有绝对值最小的有理数?若有,请把它写出来?

(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。

(4)若a>0,b<0,a<|b|,则你能比较a、b、-a、-b这四个数的大小吗?(本题属提高题,不要求全体学生掌握)

(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)

6、议一议,谈谈本节课你有哪些收获

(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用"<"(或">")连接,这种方法在比较多个有理数大小时非常简便。

六、布置作业:P19 A组、B组

基础好的A、B两组都做

基础较差的同学选做A组。

人教版初中数学教案大全 篇13

教学目标

1.理解二元一次方程及二元一次方程的解的概念;

2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。

教学重点、难点

重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

教学过程

1.情景导入:

新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902880.2.

2.新课教学:

引导学生观察方程80a+150b=902880与一元一次方程有异同?

得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。

3.合作学习:

给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换。(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法。提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?

4.课堂练习:

1)已知:5xm-2yn=4是二元一次方程,则m+n=;

2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=_

5.课堂总结:

(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

(2)二元一次方程解的不定性和相关性;

(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

作业布置

本章的课后的方程式巩固提高练习。

四年级人教版数学教案 篇14

一年级数学教案人教版1

左和右

教学目标:

1、通过游戏,认识自己身上的左右位置。

2、通过观察、讨论、交流,知道以自我为参照中心的左右位置。

3、通过观察,小组合作讨论,辨析,实践活动,能说出以其他物体为参照中心的左右位置。

4、感知生活中处处有数学,并对学生进行安全教育。

教学重点、难点:

从以自我为参照中心确定左右位置过渡到以其他物体为参照中心确定左右位置。

教学准备:

多媒体

教学过程:

一、游戏引入,激发兴趣

师:在今天上课之前老师先请小朋友们放松一下,请大家听一段音乐。

师:刚才我们跳舞的时候,出现了两个方位词,小朋友听出来了么?(左和右)

师:对!今天我们将学习有关左与右的知识。

出示课题:左和右(注意左、右的写法)

二、共同探讨,获取新知

1、用左右手引入,感知自身的左与右。

师:这个小朋友在吃饭,你们能告诉老师哪只是左手,哪只是右手?(拿调羹的是右手,拿碗的是左手)。

师:你们平时习惯用哪只手拿调羹的?请举起这只手。(学生举手)

师:其实在我们的生活中,大多数人和你们一样习惯用这只手拿调羹,我们就称这只手为右手(贴上粘纸“右”)。所以和右手同方向的这一边就叫做右边,这只脚就是右脚。

师:这只手是右手,那另一只手就是左手(贴上粘纸“左”)。所以和左手同方向的这一边就叫做左边,这只脚就是左脚。

师:我们现在能分清楚左手、右手,左脚、右脚。小朋友再看一看自己的身体,还有像这样的左与右吗?谁来说说?(要求学生摸着说)

师:我们小朋友已经学会区分左右了,接着老师请小朋友来做一个小游戏。游戏的名字是:听口令做动作。

左拍拍、又拍拍,

向左看、向右看,

左手摸左耳、右手摸右耳,

双手举起来,耶。

师:小朋友真聪明,现在老师这里有些图片。图片上面是我们小朋友身上的某些部分,你知道它们是左边还是右边吗?

小结:将自身的位置调整到与照片中的位置相同,再判断。

2、结合具体场景,进一步理解以自我为参照中心左与右的位置关系。

师:小朋友们真聪明!今天来了很多老师,他们对你们不是很熟悉,你们能帮陈老师介绍一下自己的同学吗?不过在介绍之前老师也对小朋友们提一个小小的要求那就是你要告诉我:我的左边是谁?我的右边是谁。(学生介绍)

师:(请一名学生的左边同学站起来)

3、认识以其他物体为参照中心的左与右

(1)、出示P47的题1

师:小朋友们介绍得真不错,你们已经认识了左与右,我们现在到大街上去瞧一瞧!

师:大街上来来往往的车辆和行人真多,真热闹啊!我们在过马路时要注意什么?

小结:过马路,要安全,先看左,再看右。(板书)

(2)、出示P47的题2

师:小丁丁想过马路,他先看看左,再看看右。他向左看到了什么?向右看到了什么?

请个别同学回答。

(4)、出示P47的题3

师:这时,小巧也准备过马路。那么,她向左看到了什么?向右看到了什么?

独立完成后核对。

师:今天我们一起学习了“左与右”,知道在我们的生活中会经常碰到左与右。比如上课时,我们举右手;上下楼梯时要靠右走。如今世博会就要在上海举行了,我们要遵守世博礼仪,其中有一条就规定,乘坐自动扶梯时,要左行右立。只有遵守世博礼仪,我们才是讲文明的小公民。

三、通过游戏,巩固新知

1、说一说。

师:小丁丁跟着妈妈去超市购物,他们来到了文具柜台。呵!那么多玩具,挑选什么呢?妈妈规定只能买一样,并且不能说出它的名字,只能说出它的左、右邻居各是谁。小朋友,如果你是小丁丁胖,你会怎么说呢?其他小朋友能根据他的说法,猜出他想买的是什么吗?

2、摆一摆。

(1)师:把数学书摆在课桌的中间,把文具盒摆在数学书的右边,把铅笔摆在文具盒的右边,把学具盒摆在数学书的左边,把橡皮摆在学具盒的左边。

(2)让学生说一说,摆在最左边的是什么,摆在最右边的是什么。从左数,文具盒是第几个,从右数,文具盒是第几个。数学书的左边有什么,右边有什么。

3、跳一跳

出示:《分清左右》:向左拍拍,向右拍拍,向左拍拍,向右拍拍,左手跳舞,右手跳舞,左手、右手分得清楚。

板书:左与右

过马路,要安全,

先看左,再看右。

一年级数学教案人教版2

教学目标:

1、从数铅笔的具体情境中认识百以内的数,体验数量与物体的对应关系。

2、会数、会读百以内的数,还能根据一定的规律数数。

3、体会数位、基数、序数的意义。

教学重点:

数数、读数。

教学难点:

有规律的数数。

教学过程:

一、情境创设,激发兴趣

1、小朋友刚过了一个愉快的新年,大家都到长辈那儿拜年,你在春节里有什么收获吗?

2、今天,老师也准备了一些礼物要送给大家,看……(出示铅笔)一共有多少支铅笔呢?

二、数数、读数

1、我们来数一数,说说你是怎样数的?

2、学生活动:

(1)一支一支地数、两支两支地数、五支五支地数。

(2)把10支捆成一捆,一捆一捆地数。

明确10个十是100。

(3)活动时让学生自己动手,分不同的形式数)

3、圈一圈,数一数。(第2页)并说说是怎么数的。

4、在下面各数的后面连续数出5个数来。

二十三、五十六、七十七、八十五、九十五

5、读数、拨数。

师写出一个数,生读,并在计数器上拨出来,说说是怎么拨的,表示什么。如43,十位上拨4,表示4个十;各位上拨3,表示3个一。

三、练一练

1、数数(顺数、倒数)

2、看谁数得快。(第3页)

主要让学生明白十个十个数的方法。

3、接力赛。(第3页)

四、课外活动

数一数自己小组同学的铅笔一共有几支。

一年级数学教案人教版3

教学目标:

1、通过“数豆子”的实践活动,初步培养学生的估算意识。

2、在“数豆子”的操作活动中体会物体与数量的对应关系,体验数的实际意义。

3、会写百以内的数,进一步体会数位、基数、序数的意义。

教学重点:

通过不同的活动理解位值意义。

教学难点:

位值意义。

教学过程:

一、情境创设

1、出示一杯豆子(内装28粒)。

2、请学生估计一下有多少粒。

3、师生共同先数10粒放入另一杯子中,再估计一下。

4、谁估计得比较正确呢?为什么?我们来数一数吧。

二、数豆子

1、指名几生来数,其他学生跟着数。

(用不同的方法数)

三、知识学习

1、智慧老人:这个数怎么拨?怎么写?

2、学生试一试,说说怎么拨,怎么写。(每个学生在计数器上拨,在纸上写,再指名拨、写)

3、小组合作:说说这个数的各数位上数的意义。

4、汇报交流。

5、小结:十位上的数表示几个十,个位上的数表示几个一。

6、摆一摆。摆出26根小棒,说说是怎么摆的。

7、讨论:22的这两个“2”的意义一样吗?

8、交流。

四、巩固练习

1、写出计数器上表示的数,并说说意义。(第4页)

2、填空(第5页)

补充:根据老师的表述写数。如:6个十和3个一是。

3、看计数器写数。(第3题)

4、写门牌号,理解序数的意义。(第4题)

5、游戏:抓小棒,先估计有多少根,再数一数,说一说有几个十和几个一。

一年级数学教案人教版

人教版初中数学教案通用 篇15

学习目标:

1.理解平行线的意义两条直线的两种位置关系;

2.理解并掌握平行公理及其推论的内容;

3.会根据几何语句画图,会用直尺和三角板画平行线;

学习重点:

探索和掌握平行公理及其推论。

学习难点:

对平行线本质属性的理解,用几何语言描述图形的性质

一、学习过程:预习提问

两条直线相交有几个交点?

平面内两条直线的位置关系除相交外,还有哪些呢?

(一)画平行线

1、 工具:直尺、三角板

2、 方法:一"落";二"靠";三"移";四"画"。

3、请你根据此方法练习画平行线:

已知:直线a,点B,点C.

(1)过点B画直线a的平行线,能画几条?

(2)过点C画直线a的平行线,它与过点B的平行线平行吗?

(二)平行公理及推论

1、思考:上图中,①过点B画直线a的平行线,能画 条;

②过点C画直线a的平行线,能画 条;

③你画的直线有什么位置关系? 。

②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?

二、自我检测:

(一)选择题:

1、下列推理正确的是 ( )

A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d

C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c

2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )

A.0个 B.1个 C.2个 D.3个

(二)填空题:

1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。

2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:

(1)L1与L2 没有公共点,则 L1与L2 ;

(2)L1与L2有且只有一个公共点,则L1与L2 ;

(3)L1与L2有两个公共点,则L1与L2 。

3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么 www.huzhidao.com 这两个角的大小关系是 。

4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。

三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°。

一键复制全文保存为WORD