三角形的内角和数学教学设计优秀8篇

《三角形内角和》教学设计(精选18篇)问渠那得清如许,为有源头活水来,这里是漂亮的编辑帮家人们整理的三角形的内角和数学教学设计优秀8篇,希望可以帮助到有需要的朋友。

《三角形内角和》数学教案 篇1

一、教学内容:

三角形内角和(教材85页的例五)

二、教学目标:

1、2、3、知道三角形的内角和是180°。正确计算三角形中某一个角的度数。培养学生分析、判断的能力,渗透知识间的内在联系和转化的数学思想。

三、教学重难点

理解并熟练运用三角形的内角和是180°。

四、教具学具准备

不同形状的三角形,量角器

五、教学过程:

(一)故事导入:

三角形家里的兄弟们在家里吵个不停,钝角三角形说:“我有一个角最大,我的`三个角之和也是最大”,直角三角形说:“我一个角都90°,更何况我长了三只脚,我肯定比你大”,等边三角形说:“我三条边都相等,我三个角的度数之和也不比你直角三角形,钝角三角形三角之和小呀。这家兄弟就这样,你一言,我一语的吵的不可开交,直角三角形和钝角三角刚要动手打起来时,妈妈回来了。三角形妈妈很奇怪,急忙就问:怎么了孩子们?锐角三角形低着头小声说:妈妈,他们都说:他三个角之和比我大,是这样的吗?三角形妈妈哈哈大笑,我以为你们在吵什么呢?原来是这个问题,好了孩子们,要想知道你们三个角之和到底是多少?今天我带你们去城区二小四年级那里的小朋友今天就在学习这节课,兄弟们跟着妈妈一起今天也来到我们的教室。同学们一会儿学会了,把正确答案告诉这几位兄弟,好吗?

(二)教学实施

(1)小组合作把准备的三角形折下来,在拼一拼,看能拼成一个什么角?

(2)反馈结果。

(3)学生总结结果。

三角形的内角和是180°。(课件展示三角形的内角和是180度。)

(4)(课件出示学过的三角形)请几位同学告诉三角形家里的兄弟们,他们的内角和是多少?

(三)设疑。

根据三角形的内角和是180°如果知道两个角的度数,就可以求出第三个角的度数。(课件出示)

在一个直角三角形中,∠C=30°,求∠A的度数?

(1)学生读题,分析题意。

(2)尝试做题。

(3)教师订正书写。(课件出示)

∠A=180°-90°-30°=60°

(四)做一做

1、在一个三角形中∠1=140°,∠3=25°.求∠2的度数?

2、我是小判官。(对的打√,错的打×)

①把一个等腰三角形分成两个完全一样的小

三角形,每个小三角形的内角和都是90度。

②直角三角形的两个锐角和是90度。

③任何一个三角形的内角和都是180度。

④钝角三角形的两个锐角之和大于90度,直角三角形的两个锐角之和正好等于90度

3、求下面各角的度数。(课件出示)

(五)课堂作业:

(1)三边相等,求三个角的度数。

(2)等腰三角形,顶角是96°,求底角

(3)在一个直角三角形中,有个锐角是40°,求另一个角。

(2)我给我女儿买了一个等腰三角形的风筝,他的一个底角是70°,它的顶角是多少度?

(六)智力大闯关

我的一个内角是72°,是另一个内角的4倍,我是一个什么三角形?

六、课堂小结。

三角形的内角和是多少?

三角形的内角和是180度。

七、作业布置。

P88页9、10

附板书

三角形的内角和是180°

角形内角和教学设计 篇2

一、教学目标:

1、理解掌握三角形内角和是180°,并运用这一性质解决一些简单的问题。

2、通过直观操作的方法,引导学生探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。

3、在探索和发现三角形内角和的过程中获得成功的体验。

二、教学重、难点:

重点:探索并发现三角形内角和等于180°。

难点:运用三角形内角和等于180°的性质解决一些实际问题。

教具:课件、三角形若干。

学具:量角器、直角三角形、锐角三角形和钝角三角形各一个。

三、教学过程

(一)创设情境,导入新课

我们已经学过了三角形的知识,我们来复习一下,看看大屏幕,各是什么三角形?谁能说说什么是锐角三角形、直角三角形、钝角三角形?追问:不管是什么三角形它们都有几个角呢?这三个角都叫做三角形的内角,而这三个内角的和就是这个三角形的内角和。那么谁来说一说什么是三角形的内角和?三角形有大有小,形状也各不相同,那么它们的内角和有没有什么特点和规律呢?我们来看一个小片段,仔细听它们都说了什么?

教师放课件。

课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”

都听清它们在争论什么吗?(它们在争论谁的内角和大。)谁能说一说你的想法?(学生各抒己见,是不评价)果真是这样吗?下面我们就来研究“三角形内角和”。

(板书课题:三角形内角和)

(二)自主探究,发现规律

1、探究三角形内角和的特点。

(1)检查作业,并提出要求:

昨天老师让每位学生都分别剪出了锐角三角形、直角三角形和钝角三角形,并量出了每个角的度数,都完成了吗?拿出来吧,一会我们要算出三角形的内角和填在下面的表格里。我们来看一下表格以及要求。出示小组活动记录表。

小组活动记录表

小组成员的姓名

三角形的形状

每个内角的度数

三角形内角的和

(要求:填完表后,请小组成员仔细观察你发现了什么?)

②小组合作。

会使用表格了吗?下面我们就以小组为单位,按照要求把结果填在小组长手中的表格内。

各组长进行汇报。发现了三角形的内角和都是180°左右。

师:实际上,三角形三个内角和就是180°,只是因为测量有误差,所以我们才得到刚才得到的数据。

2、验证推测。

那么同学们有没有什么办法知道三角形的内角和就是180°呢?大家可以讨论一下,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。师生先演示撕下三个角拼在一起是否是平角,同学们在下面操作进行体验,再用课件演示把三个内角折叠在一起(这时要注意平行折,把一个顶点放在边上)学生也动手试一试。

通过我们的验证我们可以得出三角形的内角和是180°。

板书:(三角形内角和等于180°。)

3、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

4、同学们还有什么疑问吗?大家想一想我们知道了三角形内角和是180°可以干什么呢?(知道三角形中两个角,可以求出第三个角)

出示书28页,试一试第3题,并讲解。

说明:在直角三角形中一个锐角等于30°,求另一个锐角。

生独立做,再订正格式、以及强调不要忘记写度。

小结:同学们有没有不明白的地方?如果没有我们来做练习。

(三)巩固练习,拓展应用

1、出示书29页第一题。说明:第一幅图是锐角三角形已知一个锐角是75°,另一个锐角是28°,求第三个锐角?第二幅图是直角三角形已知一个锐角是35°,求另一个锐角?第三幅图是钝角三角形已知一个锐角是20°,另一个锐角是45°,求钝角?

完成,并填在书上。讲一讲直角三角形还有什么解法。

2、出示29页第2题。

说明:一个钝角三角形说:我的两个锐角之和大于90°。

一个直角三角形说:我的两个锐角之和正好等于90°。让学生判断。

3、画一画:

出示四边形和六边形。运用三角形内角和是180°计算出各自的内角和。你能推算出多边形的内角和吗?

三角形内角和180度是科学家帕斯卡12岁时发现的。我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。

(四)课堂总结

让学生说说在这节课上的收获!

《三角形内角和》数学教案 篇3

【教学目标】

1.学生动手操作,通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。

2.在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3.体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【教学重点】

探究发现和验证"三角形的内角和为180度"的规律。

【教学难点】

理解并掌握三角形的内角和是180度。

【教具准备】

PPT课件、三角尺、各类三角形、长方形、正方形。

【学生准备】

各类三角形、长方形、正方形、量角器、剪刀等。

【教学过程】

口算训练(出示口算题)

训练学生口算的速度与正确率。

一、谜语导入

(出示谜语)

请画出你猜到的图形。谁来公布谜底?

同桌互相看一看,你们画出的三角形一样吗?

谁来说说,你画出的是什么三角形?(学生汇报)

(1)锐角三角形,(锐角三角形中有几个锐角?)

(2)直角三角形,(直角三角形中可以有两个直角吗?)

(3)钝角三角形,(钝角三角形中可以有两个钝角吗?)

看来,在一个三角形中,只能有一个直角或一个钝角,为什么不能有两个直角或两个钝角呢?三角形的三个角究竟存在什么奥秘呢?这节课,我们一起来学习"三角形的内角和。"(板书课题:三角形的内角和)

看到这个课题,你有什么疑问吗?

(1)什么是内角?有没有同学知道?

内:里面,三角形里面的角。

三角形有几个内角呢?请指出你画的三角形的内角,并分别标上∠1、∠2、∠3.

(2)谁还有疑问?什么是内角和?谁来解释?(三个内角度数的和)。

(3)大胆猜测一下,三角形的内角和是多少度呢?

【设计意图】

创设数学化的情境。学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样".这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣。

二、探究新知

有猜想就要有验证,我们一起来探究用什么方法能知道三角形的内角和呢?

1、确定研究范围

先请大家想一想,研究三角形的内角和,是不是应该包括所用的三角形?

只研究你画出的那一个三角形,行吗?

那就随便画,挨个研究吧?(太麻烦了)

怎么办?请你想个办法吧。

分类研究:锐角三角形,直角三角形,钝角三角形(贴图)

2、探究三角形的内角和

思考一下:你准备用什么方法探究三角形的内角和呢?

小组合作:从你的学具袋中,任选一个三角形,来探究三角形的内角和是多少度?

小组汇报:

(1)量一量:把三角形三个内角的度数相加。

直接测量的方法挺好,虽然测量有误差,但我们知道了三角形的内角和在180°左右。究竟是不是一定就是180°呢?哪个小组还有不同的`方法?

(2)拼一拼:把三角形的三个内角剪下来,拼成了一个平角。

能想到这种剪一剪拼一拼的方法,真不简单。三个角拼在一起,看起来像个平角,究竟是不是平角呢?谁还有别的方法?

(3)折一折:把三角形的三个角折下来,拼成了一个平角。

这种方法真了不起,能借助平角的度数来推想三角形内角和是180°。

总结:同学们动脑思考,动手操作,运用不同的方法来验证三角形的内角和。这三种方法都很好,但在操作过程中,难免会有误差,不太有说服力。我们能不能借助学过的图形,更科学更准确的来验证三角形的内角和?

3、演绎推理的方法。

正方形四个角都是直角,正方形内角和是多少度?

你能借助正方形创造出三角形吗?(对角折)

把正方形分成了两个完全一样的直角三角形,每个直角三角形的内角和:360°÷2=180°

再来看看长方形:沿对角线折一折,分成了两个完全一样的直角三角形,内角和:360°÷2=180°

这种方法避免了在剪拼过程中操作出现的误差,

举例验证,你发现了什么?

通过验证,知道了直角三角形的内角和是180度。

你能把锐角三角形变成直角三角形吗?

把锐角三角形沿高对折,分成了两个直角三角形。

一个直角三角形的内角和是180°,那么这个锐角三角形的内角和就是180°×2=360°了,对吗?(360-180=180°)

通过计算,我们知道了这个锐角三角形的内角和是180°,那么所有的锐角三角形的内角和都是180°吗?你是怎么知道的?

通过刚才的计算,你发现了什么?(锐角三角形内角和180°)

钝角三角形的内角和,你们会验证吗?谁来说说你的想法?180×2-90-90=180°

通过验证,你又发现了什么?(钝角三角形内角和180°)

4、总结

通过分类验证,我们发现:直角180,锐角180,钝角180,也就是说:三角形的内角和是180°。也验证了我们的猜想是正确的。(板书)

5、想一想,下面三角形的内角和是多少度?(小--大)

你有什么新发现?(三角形的内角和与它的大小,形状没有关系。)

【设计意图】

为了满足学生的探究欲望,发挥学生的主观能动性,通过独立探究和组内交流,实现对多种方法的体验和感悟。学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。

三、自主练习

1、在一个三角形中,如果想求一个角的度数,至少得知道几个角的度数呢?(2个)那我们就试一试,挑战第一关。(两道题)

2、算得真快!如果只知道一个角的度数,还能求出未知角的度数吗?挑战第二关。(三道题)

3、说得真清楚,如果一个角的度数也不知道,你还能求出未知角的度数吗?挑战第三关。(一道题)

师:同学们真了不起,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,都能正确求出未知角的度数。

4、学无止境,课下,请你利用三角形的内角和,探究一下四边形、五边形、六边形的内角和各是多少度?

【设计意图】

练习由浅入深,层层递进。从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,梯度训练,拓展思维。

四、课堂总结

同学们,回想一下,这节课我们学习了什么?通过这节课的学习,你有哪些收获呢?

真了不起,同学们不仅学到了知识,还掌握了学习的方法。"在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的",在这节课上,重要的不是我们知道了三角形的内角和是180°,而是我们通过猜测,一步一步验证,得到这个规律的过程。

课后反思

《三角形的内角和》是五四制青岛版四年级上册第四单元的信息窗二,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一系列活动得出"三角形的内角和等于180°".

本着"学贵在思,思源于疑"的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。"问题的提出往往比解答问题更重要",其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是"知其然而不知其所以然".

为此,我设计了大量的操作活动:画一画、量一量、折一折、拼一拼等,我没有限定了具体的操作环节。在操作活动中,老师有"扶"有"放".做到了"扶"而不死,"伴"而有度,"放"而不乱。利用课件演示,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。

最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,层级练习,步步加深,梯度训练。

教学是遗憾的艺术。当然本节课的教学中,存在许多不尽如意之处:

1、让学生养成良好的学具运用习惯,特别是小组学生在合作操作时,应有效指导,对学生及时评价,激励表扬,调动学生学习的积极性与主动性。

2、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。

3、在做练习时,为了赶时间,题出现的频率较快,留给学生计算思考的时间不足,可能只照顾到好学生的进程,没有关注全体学生,今后应注意这一点。

教学是一门艺术,上一节课容易,上好一节课谈何容易,在今后的课堂教学中,只有勤学、多练,才能更好的为学生的学习和成长服务,让自己的人生舞台绽放光彩。

角形内角和教学设计 篇4

教学内容:

教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

教学目标:

1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

3、培养学生动手动脑及分析推理能力。

重点难点:

掌握三角形的内角和是180°。

教学准备:

三角形卡片、量角器、直尺。

导学过程

一、复习

1、什么是平角?平角是多少度?

2、计算角的度数。

3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)

二、新知

(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)

1、读学卡的学习目标、任务目标,做到心里有数。

2、揭题:课件演示什么是三角形的内角和。

3、猜想:三角形的内角和是多少度。

4、验证:

(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)

(4)汇报结论(清楚明白的给小组加优秀10分)

5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)

7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)

三、知识运用(课件出示练习题,生解答)

1、填空

(1)一个三角形,它的两个内角度数之和是110,第三个内角是()、

(2)一个直角三角形的一个锐角是50,则另一个锐角是()。

(3)等边三角形的3个内角都是()。

(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。

(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。

2、判断

(1)一个三角形中最多有两个直角。()

(2)锐角三角形任意两个内角的和大于90。()

(3)有一个角是60的等腰三角形不一定是等边三角形。()

(4)三角形任意两个内角的和都大于第三个内角。()

(5)直角三角形中的两个锐角的和等于90。()

四、拓展探究

根据所学的知识,你能想办法求出四边形、五边形的内角和吗?

1、小组讨论。2、汇报结果。3、课件提示帮助理解。

五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。

角形内角和教学设计 篇5

【教材分析】

《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】

经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1、知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。

【学习目标】

知识目标:掌握三角形内角和是180度这一规律,并能实际应用。

能力目标:培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。

情感目标:让学生体会几何图形内在的结构美。

【教学过程】

一、情景激趣,质疑猜想。

播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。

钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。”

师:想一想,什么是三角形的三个内角的和。

生:三角形的三个内角的度数和。

师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?

学生进行猜想,自由发言。

(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)

二、自主探究,验证猜想

师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是180°,你能设法验证这个猜想吗?

生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。

生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。

生3:我把三角形的三个角撕下来,拼一拼是否180°。

生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。

……

师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上∠1、∠2、∠3,以免在剪拼时把内角搞混了。)

学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。

(设计意图:验证猜想为学生提供了“做数学”的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)

三、交流评价,归纳结论。

学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。

实验报告单

实验名称

三角形内角和

实验目的

探究三角形内角和是多少度。

实验材料

尺子

剪刀

量角器

锐角三角形纸片

直角三角形纸片

钝角三角形纸片

我的方法

我的发现

我的表现

自评

互评

学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。

师生共同归纳,得出结论:

三角形内角和等于180°

(设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的'愉悦,促使他们获得更大的成功。)

四、分层练习,巩固创新。

①课件出示:

师:这个三角形是什么三角形?知道几个内角的度数?

生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。

师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。

学生做完后反馈讲评时让学生说说自己的方法。

生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。

∠A=180°-30°-90°=60°。

生2:先用30°加上90°得120°再用180°减去120°也可得∠A=60°。

②学生完成完成P29的第一题。

引导学生按照前面的方法独立完成,教师巡视,集体订正。

③猜一猜三角形的另外两个角可能各是多少度。

同桌同学互相说一说。(答案不唯一)

④小组操作探究活动。

让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。

方法

四边形内角和

用量角器量出每个内角的度数,并相加。

把四边形四个角剪下来,拼在一起。

把四边形分为两个三角形。

填表后让学生想一想、互相说一说,四边形内角和是多少度?

(设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。)

《三角形内角和》数学教案 篇6

教学目标:

掌握探究方法(猜想—验证—归纳总结),学会用“转化”的数学思想探究三角形内角和。

重难点分析

重点分析:教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。

难点分析:通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。但是围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,这些初步的数学交流能力还欠缺。

教学方法:

1、探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的习惯。

2、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。

教学过程

导入:各位同学大家好,今天由我来和大家一起学习人教版四年级下册《三角形的内角和》,我们前面学习和了解了三角形的相关知识,请大家说说三角形按角分,可以分成哪几类?知识讲解(难点突破)

例五:画出几个不同类型的三角形。量一量,算一算,三角形3个内角的和各是多少度?解决这个问题的时候,我们先来了解一下什么是三角形的内角和?

讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

(一)量一量:我们如何解决这个问题呢?

同学们请看,这里有一个直角三角形,我们先分别量一量这个直角三角形三个内角的度数并标注。90°30°60°现在我们将这三个内角的度数加起来等于180度°通过测量计算发现这个直角三角形内角和都是180°,是不是所有直角三角形的内角和都是180°呢?同学们你们也来量一量你刚才画的直角三角形3个内角的度数,算一算是不是也和老师的结果一样呢?注意在测量要认真,力求准确。停顿数秒从刚才的测量和计算结果中,你发现了什么?你是不是发现直角三角形的内角和都是180°当然有些同学的测量结果不是等于180°,这是我们在测量时,由于在测量工具、测量方法等各方面的原因,使我们的测量结果存在一定的误差。实际上,直角三角形三角形内角和就等于180°。

(二)

1、提出猜想:刚才我们通过测量和计算发现了直角三角形内角和等于180,那你能不能大胆的猜测一下:锐角三角形内角和,钝角三角形的内角和是不是也是180°呢?

2、动手操作,验证猜想这时每个同学的心中都有了猜测的答案,这个猜想是否成立呢?除了用量角器量一量,你还有其他办法来验证吗?聪明的你,是不是想到好办法了,那就快快动手吧!

方法:

A、拼一拼的。方法

B、折一折的方法把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,通过折叠的方法,三角形的三个内角折到一起正好组成一个平角,所以也能证明三角形的内角和是180°。

同学们我们通过量一量拼一拼折一折,发现无论是直角三角形,锐角三角形钝角三角形,它们内角和都等于180度,我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

小结:通过剪拼的方法,把三个角剪下来,拼在一起,三角形的三个内角正好拼成一个平角,因为平角是180°,所以三角形的内角和是180°三角形的形状和大小虽然不同,但是三角形的内角和都是180度。说明三角形的内角和和他的形状大小无关

课堂练习(难点巩固)

总结:我们今天用量一量,折一折,拼一拼的方法得到了三角形的内角和等于180°这一结论,希望同学们在在以后的学习中大胆探索,去发现数学的奥秘吧!我们今天的课程就到这里了,同学们再见!

角形的内角和数学教学设计 篇7

教学内容: 三角形的特征、特性、分类、内角和。

教学目标:

1.巩固掌握三角形的特性,三角形任意两边之和大于第三边以及三角形的内角和是180o。

2.,知道锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形的特点并能够辨认和区别它们。

教学过程:

活动一:简单基础的题目。

1、 作锐角三角形、直角三角形、钝角三角形的高和底。

谈谈注意什么问题?(强调钝角三角形高的画法)

2、 三角形的稳定性。

说说生活中很多事物都用到三角形的原因是什么?

3、 给出三根小棒说说可不可以组成三角形?

3.4.5 3.3.3 2.2.6 3.3.5

为什么?

三角形的分类:注意三角形各自之间的联系及个三角形的特点。

活动二:解决问题

1、 求三角形各个角的度数。

1) 三边相等

2) 等腰三角形,顶角是50度

3) 有一个锐角50度,是直角三角形

根据题目所给条件——分析——解决——汇报解题思路

2、 爸爸给小红买了一个等腰三角形的风筝。它的一个底角是75度,顶角是多少?

观察找信息——分析——解决

3、长方形和正方形的内角和各是多少度?

活动三:提高题

1、 能画出有两个直角或者两个钝角的三角形吗?为什么?

交流——汇报

2、 根据三角形的内角和是180度,能求出下面的四边形和正六边形的内角和吗?

交流讨论——汇报

四、综合练习:课本P127 8 P130-13110、11、12、13

总复习——三角形的练习卷

复习目标:1、通过讲评练习使学生对三角形的相关概念更清楚。

2、熟练画出三角形的高和底

3、三角形按角分和按边分的分类,以及通过三角形的内角和180度来求三角形的各角,特殊三角形的求角度。

复习过程:

1、复习概念:

概念:1、由三条线段组成的图形叫做三角形。

2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

3、三角形的内角和为180度

4、三角形任意两条边的和大于第三条边

2、练习讲评:

(一) 在钉子板上画指定的三角形

注意:画的时候为了准确,需要画在钉子之间

(二) 填空:

1、一个三角形有( )条边、( )个角和( )个顶点

2、三角形按角的大小来分,可分为( )、( )( |三类

3、三角形按边的长短来分,可分为( )、( )

注意:基础概念题,主要是给学生对知识做个梳理

4、5、6、题主要是根据三角形内角和是180度,来计算角度,除了方法外,还要强调细心计算。

(三) 判断:

1、2、3、4、5都为概念的延伸题,要求学生要记忆

6、7、8为多项选择,主要是让学生利用公式、概念灵活做题

(四) 画高:

注:重点也是难点,放慢速度,让学生用幻灯展示作业,大家来评一评做对了没有。

学生说一说画高的时候应该注意什么

1、 用三角板画垂线,用虚线

2、 要标上垂直符号

(五) 计算

1、 在三角形中角1=136度;角2=29度;角3=?

2、 妈妈买了个等腰三角形的风铃。它的一个底角是25度,它的顶角是多少度?

3、 在直角三角形中,一个锐角是35度,另一个锐角是多少度?

注意:强调三角形的内角和是180度

角形内角和教学教案设计 篇8

【教材分析】:

新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。

【教学目标】

知识与技能

1、理解和掌握三角形的内角和是180度。

2、运用三角形的内角和的知识解决实际问题。

过程与方法

经历三角形的内角和的探究过程,体验“发现——验证——应用”的学习模式。

情感态度与价值观

在学习活动中,渗透探究知识的方法,提高学生学习的能力,培养学生的创新精神和实践能力。

【教学重点】

重点:理解和掌握三角形的内角和是180度。

突破方法:引导学生用测量或剪拼的方法探究三角形的内角和。合理猜想,测量验证。

【教学难点】

用三角形的内角和解决实际问题。

突破方法:推理分析计算。运用推理,正确计算。

教法:质疑

【教学方法】

引导,演示讲解。

学法:实践操作,小组合作。

【教学准备】:

多媒体课件,锐角,直角,钝角三角形的硬纸片,剪刀。

【教学时间】

一课时

【教学过程】

一.创设情境,引入新课

师:同学们,我们这俩天学习了三角形的分类,通过对角的分类,我们能够分成几类三角形?

生:三类,分别为锐角三角形,直角三角形,钝角三角形。

师:嗯,真好,那么对边的分类呢?

生:俩类,分别为等腰三角形,等边三角形。

师:老师想让同学们帮老师画一个三角形,能做到吗?

生:能。

师:请听要求,画一个有一个角是直角的三角形,开始。(学生动手操作)

师:再来一个可以吗?请听要求,画一个有俩个角是直角的三角形,开始。

生:不能画,因为当俩个角是90度的时候,俩个顶点在一条线上,不能组成封闭图形。

师:回答的真好,那么为什么会出现这种情况呢?是因为三角形中的角而引起的,那么同学们想不想知道其中的秘密呢?

生:想。

师:好,那么我们今天就一起来学习“三角形的内角和”(出示板书)

(设计意图:通过学生的动手操作,发现问题所在,这样更能调动学生的学习兴趣,为了更好的学习这节课做铺垫。)

二.探究新知

师:昨天呢,老师让同学们一人做一个自己喜欢的三角形,请同学们拿出来,看一看你们做的是什么样子的三角形。

生1:锐角三角形。

生2:直角三角形。

生3:钝角三角形。

师:嗯,我们在上个星期学习了三角形的各部分名称,谁能帮我告诉下同学们,角在哪里呢?

生:里面的三个角,可以用角1,角2,角3来表示。

师:嗯,这三个角我们也可以说成是三角形的内角,好了,今天我们既然学习三角形的内角和,也就是求成这三个角的度数和,你们猜一猜三角形内角和的度数是多少呢?

生:三角形的内角和是180度。

师:那么我们能不能一起用一些好的办法来验证一下呢?

生1:我们可以用量角器分别量出这三个内角的度数,然后再加在一起就可以求出三角形内角的和了。

师:还有其他的办法吗?

生2:我们可以用剪子剪下三个角,然后把它们拼在一起,看看这三个角拼在一起之后能够呈现出什么样子的角。

生3:我可以用折的方法,把三个角的度数折在一起。

师:同学们说的真好,既然有这么多的方法,到底哪个方法好呢?我们一起来研究一下,我把全班分成俩个小组,一队用量的方法,一队用拼的方法,看看哪个小组做的又对又快,开始。

(设计意图:通过学生的动手操作,合作交流,真正的把课堂还给学生,让学生成为学习的主体,教师适时引导,突出学生的学习的能力与价值。)

三.总结任意三角形的内角和是180度并做适当练习。

四.板书设计

三角形的内角和

量一量锐角三角形:75度+48度+58度=181度

直角三角形:90度+45度+45度=180度

钝角三角形:120度+38度+22度=180度

拼一拼图形呈现

折一折图形呈现

一键复制全文保存为WORD