作为一名教职工,常常要根据教学需要编写教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。写教学设计需要注意哪些格式呢?三人行,必有我师也。择其善者而从之,其不善者而改之。下面是美丽的编辑为大家分享的组合图形的面积教学设计(优秀3篇),希望能够帮助到大家。
教学目标:
1.在自主探索的活动中,理解计算组合图形面积的多种方法。
2.能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3.能运用所学的知识,解决生活中组合图形的实际问题。:教学重点:能根据条件求组合图形的面积。
教学难点:
理解分解图形时简单图形的差。
教具学具:
多媒体课件和长方体、正方体、平行四边形、梯形、三角形纸片。
教学方法:
先学后教,当堂训练
教学过程:
一、在拼图活动中认识组合图
1、同学们,我们已经认识了长方形、正方形、平等四边形以及三角形,下面请同学们拿出长方形、正方形,请你用这些图形拼一个复杂的图形,并说一说像什么。
2、请学生将拼出的各式各样的图形,介绍给大家:你拼的图形什么?二、在探索活动中寻找计算方法。
1、教师出示图形
学生拿出课前准备的图形,进行拼图操作活动。
学生拼出各种各样的图形,选出贴在黑板上。
指名回答:我拼的图形像我家楼梯的台阶,像一张方桌、客厅地面……
学生观察老师出示的图形,这幅图形象一张客厅的平面图。
学生讨论怎样算买多少平方米的地板?
通过这一操作活动,使学生从中体会到组合图形的组成特点。
让学生认识组合图形的形成以及特点。
让学生感受计算组合图形的必要性,并让探索的。基础上,讨论得出计算组合图形
请大家看一看,老师也准备了一个图形。对,像一张客厅的平面图,现在要在上面铺地板。
2、提出问题
你们知道应该买多少平方米的地板吗?
只要求主面积,就知道买多少平方米的地板了。那么能直接算出来吗?
3、请同学们想一想,为什么要将图形进行分割,图形割后,可以转化为我们学过的图形进行计算。
学生动手算一算,想一想,不能直接算怎么办,动手画图,怎样他割。
学生介绍自己探索中采用的分割方法。
学生分别按照黑板上的方法计算主客厅的地板的面积。
学生发独立观察图并且解决问题,然后,集体汇报、订正。
面积的基本方法。从中体会到组合图形的特点。
让学生认识组合图形的形成以及特点。
让学生感受计算组合图形的必要性。并让学生自主探索的基础上,讨论得出计算组合面积的基本方法。
从中体会到组合图形的特点。
板书设计:
五、图形的面积
组合图形面积
2.成长的脚印
一、教学目标
1、复习巩固各种图形面积的计算方法,明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算,提高学生的识图能力,分析综合能力和空间想象能力。
2、通过实践操作、练习,提高观察、分析能力和解题的灵活性;能正确地分析图形。
3、培养学生的合作、探究意识及创新精神,及积极参与数学学习活动的习惯。
二、教材分析
组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生一题多解。
三、学校及学生状况分析
我校是北京市海淀区的一所学校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学,而且是北师大版新世纪五年级教材的实验学区。
组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。
四、教学设计
(一)观察动画,复习旧知,引出新知
1、观察动画,分析引入
()(媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)
师:观察这幅图画,你发现了什么?
生:很多的基本图形,组成了很多的图形)
师:这些由基本图形组合而成的图形,就叫做组合图形。
2、复习基本图形面积公式
师:还记得我们都学过哪些基本图形吗?
(随着学生回答,按学习的顺序贴各个基本图形)
问:那谁还记得这些基本图形的面积公式?
(随着学生回答,在各个基本图形后面写公式)
师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有同学已经有想法了。今天这节课,我们一起来探索组合图形面积的计算方法?(板书:在组合图形后面增加“面积” )]
(二)动手拼图,初探方法
1、自拼图形,分析要素
师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。
请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的方框内。
边做边思考:
师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?
师:现在,就请你挑出你喜欢的基本图形,来拼一个组合图形,并和小组内的同学讨论一下,怎么求你这个组合图形的面积呢?
(学生活动,教师巡视,指导画高。)
2、展示图形,分析条件
(学生分别介绍所拼的组合图形后,教师选择其中的一个作重点分析。)
师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。
(强调公共边:既做长方形的长,又作三角形的底。)
3、打开思路,探索面积
师:怎样求一个组合图形的面积?
生:分另计算三角形与长方形的面积,然后相加。
师:谁能说一说具体的计算过程?
一、知识要点
在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
二、精讲精练
【例题1】求图中阴影部分的面积(单位:厘米)。
【思路导航】如图所示的特点,阴影部分的面积可以拼成 圆的面积。
62×3.14× =28.26(平方厘米)
答:阴影部分的面积是28.26平方厘米。
练习1:
1.求下面各个图形中阴影部分的面积(单位:厘米)。
2.求下面各个图形中阴影部分的面积(单位:厘米)。
3.求下面各个图形中阴影部分的面积(单位:厘米)。
【例题2】求图中阴影部分的面积(单位:厘米)。
【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。
3.14× -4×4÷2÷2=8.56(平方厘米)
答:阴影部分的面积是8.56平方厘米。
练习2:
1.计算下面图形中阴影部分的面积(单位:厘米)。
2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。所以3.14×12×1/4×2=1.57(平方厘米)
答:长方形长方形ABO1O的面积是1.57平方厘米。
练习3:
1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。
2.如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。
3.如图所示,AB=BC=8厘米,求阴影部分的面积。
【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。
【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还原成长方形后(如图所示)。
I和II的面积相等。
因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的两组三角形面积分别相等,所以
6×4=24(平方厘米)
答:阴影部分的面积是24平方厘米。
练习4:
1.如图所示,求四边形ABCD的面积。
2.如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。求CD的长度。
3.图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。
【例题5】如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。
【思路导航】阴影部分的面积等于平行四边形的面积减去扇形AOC的面积,再减去三角形BOC的面积。
半径:4÷2=2(厘米)
扇形的圆心角:180-(180-30×2)=60(度)
扇形的面积:2×2×3.14×60/360≈2.09(平方厘米)
三角形BOC的面积:7÷2÷2=1.75(平方厘米)
7-(2.09+1.75)=3.16(平方厘米)
答:阴影部分的面积是3.16平方厘米。
练习5:
1.如图所示,∠1=15度,圆的周长位62.8厘米,平行四边形的面积为100平方厘米。求阴影部分的面积(得数保留两位小数)。
2.如图所示,三角形ABC的面积是31.2平方厘米,圆的直径AC=6厘米,BD:DC=3:1。求阴影部分的面积。
3.如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
组合图形面积计算(二)
一、知识要点
对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。有些图形可以根据“容斥问题“的原理来解答。在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。
二、精讲精练
【例题1】如图所示,求图中阴影部分的面积。
【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米
[3.14×102×1/4-10×(10÷2)]×2=107(平方厘米)
答:阴影部分的面积是107平方厘米。
解法二:以等腰三角形底的中点为中心点。把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。
(20÷2)2×1/2-(20÷2)2×1/2=107(平方厘米)
答:阴影部分的面积是107平方厘米。
练习1:
1.如图所示,求阴影部分的面积(单位:厘米)
2.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。求红蓝两张三角形纸片面积之和是多少?
【例题2】如图所示,求图中阴影部分的面积(单位:厘米)。
【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的面积。如图所示。
3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米)
解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。
3.14×42×1/4+3.14×62×1/4-4×6=16.28(平方厘米)
答:阴影部分的'面积是16.82平方厘米。
练习2:
1.如图所示,△ABC是等腰直角三角形,求阴影部分的面积(单位:厘米)。
2.如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。以AC、BC为直径画半圆,两个半圆的交点在AB边上。求图中阴影部分的面积。
3.如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米。求图中阴影部分的面积。
【例题3】在图中,正方形的边长是10厘米,求图中阴影部分的面积。
【思路导航】解法一:先用正方形的面积减去一个整圆的面积,得空部分的一半(如图所示),再用正方形的面积减去全部空白部分。
空白部分的一半:10×10-(10÷2)2×3.14=21.5(平方厘米)
阴影部分的面积:10×10-21.5×2=57(平方厘米)
解法二:把图中8个扇形的面积加在一起,正好多算了一个正方形(如图所示),而8个扇形的面积又正好等于两个整圆的面积。
(10÷2)2×3.14×2-10×10=57(平方厘米)
答:阴影部分的面积是57平方厘米。
练习3:
1.求下面各图形中阴影部分的面积(单位:厘米)。
2.求下面各图形中阴影部分的面积(单位:厘米)。
3.求下面各图形中阴影部分的面积(单位:厘米)。
【例题4】在正方形ABCD中,AC=6厘米。求阴影部分的面积。
【思路导航】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道。但我们可以看出,AC是等腰直角三角形ACD的斜边。根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半(如图所示),我们可以求出等腰直角三角形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方。这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算。
既是正方形的面积,又是半径的平方为:6×(6÷2)×2=18(平方厘米)
阴影部分的面积为:18-18×3.14÷4=3.87(平方厘米)
答:阴影部分的面积是3.87平方厘米。
练习4:
1.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。
2.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。
3.如图所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。求图形中阴影部分的面积(试一试,你能想出几种办法)。
【例题5】在图的扇形中,正方形的面积是30平方厘米。求阴影部分的面积。
【思路导航】阴影部分的面积等于扇形的面积减去正方形的面积。可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系。我们以扇形的半径为边长做一个新的正方形(如图所示),从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60。这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算。
3.14×(30×2)×1/4-30=17.1(平方厘米)
答:阴影部分的面积是17.1平方厘米。
练习5:
1.如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。
2.如图所示,O是小圆的圆心,CO垂直于AB,三角形ABC的面积是45平方厘米,求阴影部分的面积。
3.如图所示,半圆的面积是62.8平方厘米,求阴影部分的面积。