读书是学习,摘抄是整理,写作是创造,以下是编辑为大伙儿收集整理的因数与倍数说课稿【优秀7篇】,欢迎阅读,希望可以帮助到有需要的朋友。
人教版因数与倍数说课稿(三)
【说教材】
《倍数和因数》是小学人教版课程标准实验教材五年级下册第2单元的内容,也是小学阶段“数与代数”部分最重要的知识之一。《因数和倍数》的学习,是在初步认识整数的基础上,探究其性质,其中涉及到的内容属于初等数论的基本内容,相当抽象。在这一内容的编排上与以往的教材有所不同,没有数学化的语言给“整除”下定义,而是在本课时通过乘法算式借助整除的模型na=b直接给出因数与倍数的概念。在地位上,这节课是因数、倍数的概念引入,为本单元后面的内容、以及第四单元的最大公因数、最小公倍数提供了必需且重要铺垫。
【说学情】
这是一节概念课,对于学生而言可能比较抽象和枯燥。学生由于年龄的关系和个人思维发展的不同,在抽象能力和语言表达和思考的全面性方面需要老师的进一步引导。但由于本课是由乘法引入,且减少了以前老教材关于“整除”等繁杂概念,大大简化了叙述和记忆的过程,预期学生是可以理解并掌握的。
【教学目标】
1、动手操作,感受并认识因数和倍数,渗透数形结合的数学思想。引导学生理解、掌握因数、倍数的意义,知道因数、倍数两者之间的相互依存关系。
2、使学生学会用因数、倍数描述两个整数之间的关系。掌握找一个数因数的方法,渗透有序思考的方法。
3、使学生感悟到数学知识的内在联系的逻辑之美。
【教学重点】
1、建立因数、倍数的概念,并让学生理解、掌握。
2、学会有序的找出一个数的因数的方法。
【教学难点】
1、理解因数、倍数的相互依存关系。
2、使学生理解以前学习的乘法算式中的“因数”和这里的“因数”的不同,过去学习的“倍”的概念和这里的“倍数”的不同。
【说教学过程】
一、课前交流:
课开始之前,与学生交流人与人之间的关系。
(设计意图:通过师生关系、父子关系等人与人的各种关系渗透相互依存的关系,为下面的学习作铺垫)
二、理解、掌握因数和倍数的意义
(一)动手操作、抽象出3道乘法算式
师:同学们,喜欢做游戏吗?
师:下面我们就做一个摆一摆的小游戏。每个小组的信封里有12个小正方形,用上所有的小正方形你能把它们摆成一个长方形吗?开始。
生:……
师:谁能用一道乘法算式表示出你的摆法?
生:2×6=12 (点击课件)【根据学生的回答,教师点击相应的课件】
师:你是怎么摆的?
生:……
师:是这样吗?(点击课件出现2行6列的图形)
师:当然也可能是一行摆(2个),摆了(6行)。
【在这里,通过问引导、暗示学生,但答案最好让学生说出,先让学生头脑中自主建构形状相同的另外一种摆放。】
师:(点击课件)第二种摆法我们只要把它一旋转就跟第一种怎么样?
生:一样。
师:他们算一种摆法,我们可以省略。
师:还有别的摆法吗?
生:……
师:谁来猜猜他是怎么摆的?
生:……
师:还有其它摆法吗?
生:……
师:大家一起用手比划一下,是怎么摆的?
师:还有吗?
生:……
师:每行摆5个行吗?
生:……
(设计意图:通过摆,使学生在学习数学概念时,避开概念的抽象性,有利于帮助学生完成有意义的建构。除此之外,使数与形有机地结合,这样,学生对概念的理解不仅是数字上的认识,而且能与操作活动与图形描述联系起来。学生经历了“先形后数”的过程,也就是知识抽象的过程。)
师:那大家再来看看这三道乘法算式中的数,都是一些什么数?
生:整数 (板书:整数)
师:我们今天学习的新知识“因数和倍数”就是在整数的范围内研究的,一般不包括0。(板书:因数和倍数)
师:看到课题,你想知道它的哪些知识呢?
生:……
(设计意图:从学生本身出发,让学生带着问题去学习,有助于学生更有目标的参与数学活动。)
(二)、自学,理解、掌握因数和倍数的意义
师:以2×6=12为例,先请同学们自学大屏幕中的知识,看看从中你知道什么?
在自学完后设计了4个小过程:
1、师:通过自学,你知道了什么?
2、根据学生的回答,教师小结(这里,边说边指着数,让学生视觉与听觉相结合)
3、(点击课件,文字消失)同位之间互相说一说谁是谁的因数,谁是谁的倍
4、再指名让学生根据算式2×6=12,说一说谁是谁的因数,谁是谁的倍数,强化学生对于因数、倍数的理解。
接下来:
师:谁能结合这两道题(3×4=12,1×12=12)来说说谁是谁的因数,谁是谁的倍数?
生:……
师:谁能出道这样的乘法算式,让大家再来说说谁是谁的因数,谁是谁的倍数?
生:......
师:看这道算式中有没有因数倍数关系?你怎样想的?
30÷5=6
师:谁来说说?
生: ……
师:你是怎么想的?
生:……
师:再来一个 15÷5=3
师:在乘法算式、除法算式里两个数之间都有因数、倍数的关系,那在
4和20中,( )是( )的因数,( )是( )的倍数。
师:你是怎么想的?
师:这个呢?谁来说?
28和7
(设计意图:从乘法算式到除法算式再到两个整数之间,慢慢渗透,最终让学生体会什么是因数,什么是倍数这个抽象的概念。)
师:再来说说这两个。
8和24
8和2
生:……
师:你有什么发现?(此时课件中的两个8变红)
生:……
师:对啊,都有8,可8一会儿是24的因数,一会儿又是2的倍数,一会儿因数,一会儿倍数,怎么回事?
(设计意图:课件中的8变红,突出8,在同中求异,从而更加深入理解因数与倍数是两个整数之间的关系,同样一个数,在和不同数的组合中它的意义也是不同的。)
生:……
师:这是你的想法,谁还想说?
生:……
师:也就是8一会儿因数,一会儿倍数,与谁有关?
生:……
得出因数与倍数指的是两个整数之间相互依存的一种关系。
师:那今天我们学习的因数和乘法算式中的因数一样吗?
生:……
(设计意图:让学生与已有的经验形成认知冲突,区分乘法算式中各部分名称中的“因数”和今天学的“因数”的不同,加深学生对概念的理解。)
师:再来一个 8和8,谁来说说谁是谁的因数,谁是谁的倍数?
师:因数、倍数是在什么数范围内研究的?(同时大屏幕呈现刚才所有的式子)
生:……
师:就是在整数范围内研究(一般不包括0)
师:判断2.4和4 3和2有无因数倍数关系?
【强调原来学习的倍和今天研究的倍数也是不同的。如果我们想根据除法算式找出两个数之间的因数与倍数关系,被除数、除数、商都要是(整数)】
(设计意图:让学生注意区分“倍数”与前面学过的“倍”的不同,体会“倍”的概念比“倍数”的概念要广,在比较中加深概念的理解。)
三、探寻找因数的方法
师:试一试,你能从中选两个数,说说谁是谁的因数吗?
2,3,5,9,18
生:……
师:有没有好的方法,把18的因数一个不漏的全部找到?
师:下面就请同学们小组合作,完成一号作业纸,需要借助算式的把算式写在下面,开始。
生:……
学生汇报完教师小结:
师:也就是从1开始,一对对的找。找到了1,也就找到了18,1后面是2,找找到了2,也就找到了9,依次往下。
师:为什么不试4?
生:……
接下来呈现写法(两头写)并用课件展示也可用集合圈的方式来表示一个数的因数。
(设计意图:让学生在独立思考——集体交流——互相讨论过程中,学习有序思考,从而形成基本技能与方法,做到即关注了过程,又关注了结果。)
师:来操练一下,做2个对口令的游戏
师:再来练几个,完成2号作业纸。
11的因数有:
16的因数有:
1的因数有:
学生汇报
师:(课件呈现所有数的因数)观察这几个数的因数,你有什么发现?
生:……
(课件出示发现)
师:口头出题 17的因数 最小 最大
100的因数 最小 最大
100000的因数 最小 最大
(设计意图:让学生观察、比较、归纳,思考:有什么发现?让学生自己探索发现规律。)
四、练习
五、这节课你有什么收获?
(设计意图:让学生对自己本节课进行知识的梳理,有助于学生更好的内化知识)
六、拓展
完美数
(设计意图:让学生感觉数学的厚重、数学的魅力产生对数学的积极情感,增强学习数学的持久动力。)
七、课后检测
【设计理念】
第一,从生活切入,实现数形结合,完成概念的有意义建构。
数论的内容,如果从数字本身出发进行研究,对小学生来说就抽象了些。本节课,教师以解决问题“12个小正方形拼成一个长方形,有哪几种拼法?” 为引子,让学生在解决这个问题的过程中,学习数学概念,避开了抽象,有利于帮助学生完成有意义的建构。除此之外,使数与形有机地结合,这样,学生对概念的理解不仅是数字上的认识,而且能与操作活动与图形描述联系起来。学生经历了“先形后数”的过程,也就是知识抽象的过程。
第二,抓住学生思维的“最近发展区”,促使学生学会有序思考,从而形成基本的技能与方法。
在找一个数的因数环节,教师适时的追问“用什么方法找的?”,让学生充分暴露个性化的思考方法,教师点拨出学生思维中各自的优势:一对一对的找;从“1”开始有序的找,再通过有效分析,取得学生整体的认同。让学生在独立思考——集体交流——互相讨论过程中,学习有序思考,从而形成基本技能与方法,做到即关注了过程,又关注了结果。
第三,充分借助生成的素材,实现有效的合作探索,引导学生在比较中归纳寻找共性。
一个数的因数的特征,单凭记忆也不难接受,为防止学生进行“机械学习”,让学生观察、比较、归纳,思考:有什么发现?让学生自己探索发现规律。
第四,重视数学意义的渗透与拓展,力求用数学的本质吸引学生,促进学生学习数学的持续发展。
将完美数的介绍纳入本节课的教学,虽然此内容和现行学习任务之间的关系都不大,但却是学生继续学习数学所需要的,因为只有有了文化的气息,数学才变得有了灵魂,让学生感觉数学的厚重、数学的魅力,才能让学生透过枯燥,产生对数学的积极情感,增强学习数学的持久动力。
除此之外,本节课还让学生在原有知识的基础上,产生认知冲突,比较原来学的“因数”、“倍”与今天学的“因数”和“倍数”有什么不同,在比较中提炼深化,加深了对概念的理解。
一、说教材
在学习本单元之前,学生已经分阶段认识了百以内、千以内、万以内、亿以内以及一些整亿的数。较为系统地掌握了十进制计数法,同时也基本完成了整数四则运算的学习。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
教学目标定为以下几点:
(一)知识、技能目标:
1、使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。能在1到100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。
2、使学生在认识倍数和因数以及探索一个数的倍数或者因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。
(二)情感、价值目标:
让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。
本课的教学重点是理解倍数和因数的含义与方法。
教学难点是掌握找一个数的倍数和因数的方法。
二、学生学习情况分析
本班多数学生在平时的学习中缺少主动性,目的性。一部分学生怕困难,缺乏独立思考的习惯,同时,考虑问题也不够全面。在本堂课的教学中,主要调动学生的学习积极性提高学生课堂活动的参与性,体验成功的乐趣,通过学生的亲自探索和体验来达到学习知识,掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。
三、教法与学法指导
当今社会、人类的发展离不开素质教育,而实施素质教育必须“以学生为本”,课堂教学要围绕培养学生的探索精神、创新精神出发,为全面提高学生的综合素质打下一定的基础。本节课根据学生的认知能力与心理特征来进行教学策略和方法的设计。
1、遵循学生主体、教师主导(组织),学生操作、探究为主线的理念,首先从学生的操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。
2、小组合作讨论法。以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。
3、在教学过程的设计上,根据学生的兴趣,认知规律,自己采取用教材,而不搬教材的教学设计。
四、教学过程:
(一)合作交流,认识倍数和因数
1、动手操作。
出示操作要求:用12个同样大的正方形拼成一个长方形,有几种不同的拼法?观察拼成的长方形,每排摆了几个?摆了几排?用乘法算式把各种摆法表示出来。
2、提问:你表示的乘法算式是怎样的?猜猜他可能是怎么摆的?
根据学生回答,在黑板上板书出乘法算式,电脑演示相应的图形。
板书:121=1262=1243=12
(设计意图:从摆小正方形入手,提出“每排摆了几个?”“摆了几排?”这两个问题,引导学生用乘法算式把摆法表示出来,再让学生猜一猜“可能是怎么摆的”。用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。学生充分经历了“由形到数、再由数到形”的过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。)
3、谈话:用12个同样的小正方形可以摆出三种不同的长方形,写出三道不同的乘法算式。根据一道乘法算式,如43=12,我们可以说
“12是4的倍数,12也是3的倍数。
3是12的因数,4也是12的因数。”(边说边在屏幕上显示)
指名像老师一样说一说。
一起横着读一读,再竖着读一读,你读懂了些什么?
师:如果我说“4是因数,12是倍数,行吗?”
明确:倍数和因数表示的是两个数之间的关系,所以不能单说谁是倍数,谁是因数。
根据62=12,你能说出哪个数是哪个数的倍数,哪个数是哪个数的`因数吗?根据121=12呢?
(设计意图:结合具体的乘法算式介绍倍数和因数时,让学生充分地读一读,使学生初步感受倍数和因数是相互依存的,再通过对反例的辨析,使学生的感受更加深刻。)
4、这就是我们今天要研究的“因数和倍数”。为了研究方便,通常在研究因数和倍数时,所说的数都是指不为零的自然数。
5、练习。
谁也能说一道算式,考考大家谁是谁的倍数,谁是谁的因数?
若学生没有举到除法算式,就由老师举例一道除法算式。“能说谁是谁的倍数,谁是谁的因数吗?”
学生自由发言,统一认识。
小结:除法可以转化成乘法,只要满足两个自然数的乘积等于另外一个自然数,它们之间就存在倍数和因数的关系。
(设计意图:将“想想做做”第1题改为学生自己出题,说说谁是谁的倍数,谁是谁的因数,既达到了巩固的目的,来自学生自身的材料又更加真实,学生更容易接受。同时考虑到学生受思维定势的影响,可能所举例子比较单一,教师就需及时“介入”,发挥引导作用,让学生从内涵上加深对倍数和因数意义的理解。)
五、自主探索,学会找一个数的倍数。
1、谈话:刚才我们认识了倍数和因数,知道了12是3的倍数,3的倍数还有哪些?
让学生思考片刻后自己试着找一找,再小组交流。
全班汇报:(学生可能是无序地找的;也可能是有序地找的。)
在引导学生相互评价的基础上明确:
3与一个数相乘的积就是3的倍数,所以可以用3依次乘1、2、3、4、5……来找3的倍数;也可以每次加3来找3的倍数。
提问:写的完吗?(写不完)那怎么办?(用省略号表示)
2、能总结一下找一个数的倍数的方法吗?
3、能找出2的倍数或5的倍数吗?选择一个找找看。
指名汇报,教师板书:2的倍数有2、4、6、8、10……
5的倍数有3、6、9、12、15……
4、观察上面的例子,你有什么发现?先小组讨论,再交流。
设计意图:在学生自主探索的基础上,小组合作,全班交流,学生之间积极互动,“捕捉”对方的想法,完善自己的认识。
一、说教材
(1)教材的地位和前后关系:在学习本单元之前,学生已经认识了百以内、千以内、万以内、亿以内以及一些整亿的数。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
(2)教学目标:
知识、技能目标:
1.让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
情感、价值目标:
2.让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。
(3)教学重点:
理解倍数和因数的含义与方法
(4)教学难点:
掌握找一个数的倍数和因数的方法。
二、谈设计理念
首先从学生的操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。
其次以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。
三、谈教学过程:
(1)合作交流、揭示主题
用12个大小完全相同的小正方形,进行不同的'摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。
(2)教学概念、正反促成
利用横里读、竖里读,形成了比较系统的知识概念,并及时出示整个前提:是在不含0的自然数,让学生自己举例,示范说、相互说,最后以教师举学生不容易想到了例子:4×4=16,18÷6=3,促成学生不仅从乘法的角度去思考,而且也可以从除法的角度进行,也为后面找一个数的因数的方法做好伏笔。
(3)设疑,置疑,激发学生的反思力度
在教学找一个数的倍数时,“才说到12、18是3的倍数(板书:3的倍数),3的倍数是不是只有12、18这两个数呢?”组织交流:3的倍数有哪些呢?同学互评,交流形成自己的学习成果,提高形成了知识的整体性教学,加大了探索的力度,提高了思维的难度,“分钟内你们写完了吗?如果再给半分钟呢?为什么?”
(4)判断中进行教学内容的递深,形成了反思——学习——强化的整个学习过程。在学生做出“6是倍数”的正确判断之后,并不简单换章,而是以此为契机
“教学找一个数的因数”以谈话导入,形成知识相互的联系与区别,
“谈话:必须说清谁是谁的倍数,谁是谁的因数。所以6可能是某些数的倍数,也可能是某些数的因数,那我们就来找一个数的因数。你能找出36所有的因数吗?”
(5)讨论互评,自主学习
放手让学生学习找一个数的因数,从无序到有序,从自寻到互学,请学生板书,
学生评价,“提问:你是用什么方法找到一个数的因数,可以介绍给大家吗?还有其他方法吗?”
1×36=36 36÷1=36
2×18=36 36÷2=18
3×12=36 36÷3=12
4×9=363 6÷4=9
6×6=36 36÷6=6
(6)自主不失指导,掌握不失总结
如:提问:5为什么不是36的因数?(因为36÷5不能整除,有余数)
小结:不能被这个数整除的数就不是这个数的因数。
小结:我们即可以从乘法算式,也可以从除法算式找到一个数的因数。
提问:那对于一个数的因数从36的因数、15的因数这两个例子又有什么发现?
总结:对于一个数的倍数和因数,它们是不同的,但通过乘法算式、除法算式又是相互依存的、相互联系的。
四、教学板书(略)
因数和倍数三年级下册说课稿
一、说教材
在学习本单元之前,学生已经分阶段认识了百以内、千以内、万以内、亿以内以及一些整亿的数。较为系统地掌握了十进制计数法,同时也基本完成了整数四则运算的学习。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
教学目标定为以下几点:
(一)知识、技能目标:
1、使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。能在1到100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。
2、使学生在认识倍数和因数以及探索一个数的倍数或者因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。
(二)情感、价值目标:
让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。
本课的教学重点是理解倍数和因数的含义与方法。
教学难点是掌握找一个数的倍数和因数的方法。
二、学生学习情况分析
本班多数学生在平时的学习中缺少主动性,目的性。一部分学生怕困难,缺乏独立思考的习惯,同时,考虑问题也不够全面。在本堂课的教学中,主要调动学生的学习积极性提高学生课堂活动的参与性,体验成功的乐趣,通过学生的亲自探索和体验来达到学习知识,掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。
三、教法与学法指导
当今社会、人类的发展离不开素质教育,而实施素质教育必须“以学生为本”,课堂教学要围绕培养学生的探索精神、创新精神出发,为全面提高学生的综合素质打下一定的基础。本节课根据学生的认知能力与心理特征来进行教学策略和方法的设计。
1、遵循学生主体、教师主导(组织),学生操作、探究为主线的理念,首先从学生的操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。
2、小组合作讨论法。以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。
3、在教学过程的设计上,根据学生的兴趣,认知规律,自己采取用教材,而不搬教材的教学设计。
四、教学过程:
(一)合作交流,认识倍数和因数
1、动手操作。
出示操作要求:用12个同样大的正方形拼成一个长方形,有几种不同的拼法?观察拼成的长方形,每排摆了几个?摆了几排?用乘法算式把各种摆法表示出来。
2、提问:你表示的乘法算式是怎样的?猜猜他可能是怎么摆的?
根据学生回答,在黑板上板书出乘法算式,电脑演示相应的图形。
板书:12times;1=126times;2=124times;3=12
(设计意图:从摆小正方形入手,提出“每排摆了几个?”“摆了几排?”这两个问题,引导学生用乘法算式把摆法表示出来,再让学生猜一猜“可能是怎么摆的”。用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。学生充分经历了“由形到数、再由数到形”的过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。)
3、谈话:用12个同样的小正方形可以摆出三种不同的长方形,写出三道不同的乘法算式。根据一道乘法算式,如4times;3=12,我们可以说
“12是4的倍数,12也是3的倍数。
3是12的因数,4也是12的因数。”(边说边在屏幕上显示)
指名像老师一样说一说。
一起横着读一读,再竖着读一读,你读懂了些什么?
师:如果我说“4是因数,12是倍数,行吗?”
明确:倍数和因数表示的是两个数之间的关系,所以不能单说谁是倍数,谁是因数。
根据6times;2=12,你能说出哪个数是哪个数的倍数,哪个数是哪个数的因数吗?根据12times;1=12呢?
(设计意图:结合具体的乘法算式介绍倍数和因数时,让学生充分地读一读,使学生初步感受倍数和因数是相互依存的,再通过对反例的辨析,使学生的感受更加深刻。)
4、这就是我们今天要研究的“因数和倍数”。为了研究方便,通常在研究因数和倍数时,所说的数都是指不为零的自然数。
5、练习。
谁也能说一道算式,考考大家谁是谁的倍数,谁是谁的因数?
若学生没有举到除法算式,就由老师举例一道除法算式。“能说谁是谁的倍数,谁是谁的因数吗?”
学生自由发言,统一认识。
小结:除法可以转化成乘法,只要满足两个自然数的乘积等于另外一个自然数,它们之间就存在倍数和因数的关系。
(设计意图:将“想想做做”第1题改为学生自己出题,说说谁是谁的。倍数,谁是谁的因数,既达到了巩固的目的,来自学生自身的材料又更加真实,学生更容易接受。同时考虑到学生受思维定势的影响,可能所举例子比较单一,教师就需及时“介入”,发挥引导作用,让学生从内涵上加深对倍数和因数意义的理解。)
二、自主探索,学会找一个数的倍数。
1、谈话:刚才我们认识了倍数和因数,知道了12是3的倍数,3的倍数还有哪些?
让学生思考片刻后自己试着找一找,再小组交流。
全班汇报:(学生可能是无序地找的;也可能是有序地找的。)
在引导学生相互评价的基础上明确:
3与一个数相乘的积就是3的倍数,所以可以用3依次乘1、2、3、4、5……来找3的倍数;也可以每次加3来找3的倍数。
提问:写的完吗?(写不完)那怎么办?(用省略号表示)
2、能总结一下找一个数的倍数的方法吗?
3、能找出2的倍数或5的倍数吗?选择一个找找看。
人教版小学数学三年级下册说课因数和倍数,
指名汇报,教师板书:2的倍数有2、4、6、8、10……
5的倍数有3、6、9、12、15……
4、观察上面的例子,你有什么发现?先小组讨论,再交流。
(设计意图:在学生自主探索的基础上,小组合作,全班交流,学生之间积极互动,“捕捉”对方的想法,完善自己的认识,初步掌握找一个数倍数的方法。并通过交流比较,发现“一个数的倍数的个数是无限的,一个数最小的倍数是它本身,没有最大的倍数”。)
三、比较交流,探索找一个数的因数的方法
1、谈话:下面我们研究找一个数的因数。
你能想办法找出36的所有因数吗?有困难的也可以小组里先商量一下。
教师巡视,有目的地将学生中出现的各种情况指名板演。
(可能是用乘法想的,有的找的不全,而有的找的很有序;也可能是利用除法来思考的,同样有可能出现无序和有序。)
2、比较“有序”和“无序”两种情况,引导:对他的方法有没有什么需要补充或提问的?(使学生在比较、交流中感悟有序思考的必要性和科学性。)
3、比较“乘法找”和“除法找”的两种方法,你发现了什么?
(利用学生对乘、除法运算及其相互关系的已有认识,学会灵活的思考,在新旧知识之间建立起合适的联系。)
4、回顾刚才的交流,你觉得要找出一个自然数的所有因数,最大的诀窍是什么?(按一定的顺序一对一对地找,找到两个数接近为止。)
5、能找出15的因数或16的因数吗?选择一个找找看。
交流:15的因数有1、3、5、15。
16的因数有1、2、4、8、16。
6、观察上面三个例子,你发现了什么?
(“从学生的角度看问题是教学取得实效的关键”。本环节对学生可能出现的情况做了充分的预设,并通过两次针对性的比较,使学生学会灵活地、有序地思考,及时引导学生用自己的语言总结找一个数因数的方法。然后通过尝试做题巩固方法。而在观察三个例子发现一个数的因数的特征时,由于有一个数倍数特征的借鉴,所以让学生自由发言总结。)
四、联系生活,巩固应用。
1、做“想想做做”第2题。
让学生自己读题填表。
倍数和因数数学说课稿
一、说教材:
(1)教材的地位和前后关系:在学习本单元之前,学生已经认识了百以内、千以内、万以内、亿以内以及一些整亿的数。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
(2)教学目标:
知识、技能目标:
1、让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
情感、价值目标:
2、让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。
(3)教学重点:
理解倍数和因数的含义与方法
(4)教学难点:
掌握找一个数的倍数和因数的方法。
二、谈设计理念:
首先从学生的操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。
其次以学生讨论、交流、相互评价,促成学生对找一个数的`倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。
三、谈教学过程:
(1)合作交流、揭示主题
用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。
(2)教学概念、正反促成
利用横里读、竖里读,形成了比较系统的知识概念,并及时出示整个前提:是在不含0的自然数,让学生自己举例,示范说、相互说,最后以教师举学生不容易想到了例子:44=16,18÷6=3,促成学生不仅从乘法的角度去思考,而且也可以从除法的角度进行,也为后面找一个数的因数的方法做好伏笔。
(3)设疑,置疑,激发学生的反思力度
在教学找一个数的倍数时,“才说到12、18是3的倍数(板书:3的倍数),3的倍数是不是只有12、18这两个数呢?”组织交流:3的倍数有哪些呢?同学互评,交流形成自己的学习成果,提高形成了知识的整体性教学,加大了探索的力度,提高了思维的难度,“分钟内你们写完了吗?如果再给半分钟呢?为什么?”
(4)判断中进行教学内容的递深,形成了反思。
《倍数和因数》说课稿
一、学情分析
学生在平时学习中缺少主动性,一部分学生怕困难,缺乏独立思考的习惯,同时考虑问题也不够全面。在本单元的教学中,需要调动学生学习的积极性,提高学生课堂学习的参与性,体验成功的乐趣,通过学生的亲自探索和合作交流,来达到学习知识,掌握所学知识的目的。同时感受数学中的奥妙。
二、教材分析
《倍数和因数》是冀教版第五单元的内容,也是小学阶段“数与代数”部分的最重要知识之一,在四年级教材中占有相当重要的内容。本单元是在学生认识了亿以内的数,已经掌握整数加减乘除四则计算的基础上学习的。这一单元更为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础,可以说这一单元对以后的数学学习起着非常重要的'作用。这一单元主要包括了五个课时。第一课时,自然数。第二课时倍数,第三课时2.5的倍数的特征,第四课时3的倍数的特征,第五课时 认识因数、质数、合数,第六课时,分解质因数。第七课时,综合练习
在对整数和自然数的认识中,概念较多,而且容易混淆,难以理解和掌握,本套教材在整数概念的认识和相关计算的编排上,采取与相关知识整合、分散编排的方式,降低学习的难度,增强知识的应用性。
三、单元教学目标
1.了解自然数、奇数、偶数、质数、合数,并能进行判断。
2.了解倍数的含义,在1~100的自然树中,能找出10以内自然数的所有倍数,知道2.3.5的倍数的特征,会判断一个数是不是2.3.5的倍数。
3.了解乘数也叫因数,在1~100的自然树中,能找出一个自然数的所有因数,会分解质因数。
4.在观察、探索、猜想、验证的过程中,能进行有条理的思考,能比较清楚的表达自己的思考过程与结果。
5.愿意了解社会生活中与数学有关的信息,主动参与数学学习活动中;初步养成乐于思考、勇于探索数学问题的良好品质。
四、重点
1、找一个数的倍数的方法。
2.找一个数的因数的方法。
3.寻找2.3.5的倍数的特征。
4.区分倍数和因数
5.区分质数和合数
6.分解质因数。
五、说教法、说学法
1.在第一课时自然数这一课时,有两个知识点,认识自然数,认识奇数和偶数。根据本节教学内容的特点,立足于小学四年级学生的思维,决定采用合作探究式的教学方法,通过启发引导法,观察发现法以及直接讲授法来指导学生学习新知,培养学生学习的数学的兴趣。
2.在第二课时《倍数》这一课时,有两个知识点,认识倍数是基础,找一个数的倍数的方法是重点,也是难点。我会创设情景,通过开放性问题的设置来启发学生思考,在思考中体会数学概念形成过程中所蕴涵的数学方法,使之获得内心感受。
3.在第三、四课时《2、3、5的倍数的特征》这两个课时,这两个课时都是找规律。我会通过启发诱导、让学生小组合作探究的方式来学习新知。
4.在第五课时《认识因数、质数、合数》这一课时,我会利用故事激趣,设疑导入,利用多媒体展示“哥德巴赫猜想”这个故事,引入质数、合数的概念,举例讲授质数、合数的概念,通过练习让学习加深理解。然后会让学生合作探究找一个因数的方法。从而导入这节课的教学活动。
5.在第六课时《分解质因数》这一课时,通过复习因数质数、合数导入新知,然后在合作、交流、讨论中探究新知,最后让学生通过小组合作交流讨论来探究分解质因数的方法。
一、说教材
(1)教材的地位和前后关系:在学习本单元之前,学生已经认识了百以内、千以内、万以内、亿以内以及一些整亿的数。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
(2)教学目标:
知识、技能目标:
1、让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
情感、价值目标:
2、让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。
(3)教学重点:
理解倍数和因数的含义与方法。
(4)教学难点:
掌握找一个数的倍数和因数的方法。
二、谈设计理念
首先从学生的操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。
其次以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。
三、谈教学过程:
(1)合作交流、揭示主题
用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。
(2)教学概念、正反促成
利用横里读、竖里读,形成了比较系统的知识概念,并及时出示整个前提:是在不含0的自然数,让学生自己举例,示范说、相互说,最后以教师举学生不容易想到了例子:4×4=16,18÷6=3,促成学生不仅从乘法的角度去思考,而且也可以从除法的角度进行,也为后面找一个数的因数的方法做好伏笔。
(3)设疑,置疑,激发学生的反思力度
在教学找一个数的倍数时,“才说到12、18是3的倍数(板书:3的倍数),3的倍数是不是只有12、18这两个数呢?”组织交流:3的倍数有哪些呢?同学互评,交流形成自己的学习成果,提高形成了知识的整体性教学,加大了探索的力度,提高了思维的难度,“分钟内你们写完了吗?如果再给半分钟呢?为什么?”
(4)判断中进行教学内容的递深,形成了反思——学习——强化的整个学习过程。在学生做出“6是倍数”的正确判断之后,并不简单换章,而是以此为契机。
“教学找一个数的因数”以谈话导入,形成知识相互的联系与区别,“谈话:必须说清谁是谁的倍数,谁是谁的因数。所以6可能是某些数的倍数,也可能是某些数的因数,那我们就来找一个数的因数。你能找出36所有的因数吗?”
(5)讨论互评,自主学习
放手让学生学习找一个数的因数,从无序到有序,从自寻到互学,请学生板书,学生评价,“提问:你是用什么方法找到一个数的因数,可以介绍给大家吗?还有其他方法吗?”
1×36=36
36÷1=36
2×18=36
36÷2=18
3×12=36
36÷3=12
4×9=363
6÷4=9
6×6=36
36÷6=6
(6)自主不失指导,掌握不失总结
如:提问:5为什么不是36的因数?(因为36÷5不能整除,有余数。)
小结:不能被这个数整除的数就不是这个数的因数。
小结:我们即可以从乘法算式,也可以从除法算式找到一个数的因数。
提问:那对于一个数的因数从36的因数、15的因数这两个例子又有什么发现?
总结:对于一个数的倍数和因数,它们是不同的,但通过乘法算式、除法算式又是相互依存的、相互联系的。