三角形性质教学设计优秀3篇

作为一名老师,总归要编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么大家知道规范的教学设计是怎么写的吗?为大家精心整理了三角形性质教学设计优秀3篇,如果能帮助到您,小编的一切努力都是值得的。

《等腰三角形的性质》教学设计 篇1

《等腰三角形的性质》教学设计

河北肥乡第二中学

牛海美

教学目标:

知识技能:

1、理解掌握等腰三角形的性质

2、运用等腰三角形的性质进行证明和计算 数学思考:

1、观察等腰三角形的对称性,发展形象思维

2、通过实践、观察、证明等 腰三角形的性质,发展学生合情推理能力和演绎推理能力

情感态度:引导学生对图形的观察、发现、激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心 重点

:等腰三角形的性质及应用 难点

:等腰三角形的性质说明

情景描述

1、创设情境,引出课题

教师活动:现在农村经济条件好了,大部分家庭盖有楼房。大家知道农村的楼房都有房梁,并且这些房梁都保持水平状态,你知道木匠师傅采用什么方法来确定房梁是否保持水平呢?

学生活动:学生思考。学生1:用水平尺。学生2:用铅垂线,使房梁与铅垂线互相垂直。学生3:木匠师傅眼睛估计。„„

教师活动:教师肯定以上学生回答,同时指出学生3凭估计来判断,总是令人不放心,花上几万元,造出的房子是一高一低的。

现在有这样一种方法,不知道这根房梁能否保持水平? 如图,房梁上放一把三角尺(等腰直角三角形),从顶点A挂一条铅垂线,使线经过三角尺斜边的中点O。

AO 我们学习了本节课的内容,就能解决这类问题。然后引出课题:9.3.1 等腰三角形。

意图:通过问题情境,让学生体验生活中的经历,调动学生学习的主动性、积极性,激发学生的兴趣和求知欲望。

2、实验操作,探究规律

教师发给每位学生一张方格纸、一张白纸。活动一:在方格纸上画出等腰三角形

方格纸上学生画出各种等腰三角形(锐角等腰三角形、钝角等腰三角形、等腰直角三角形)。

意图:由于学生对等腰三角形已有初步的认识,通过画各种等腰三角形,进一步加深理解等腰三角形的概念,同时为下面的“折”的实验作好准备。

活动二:等腰三角形的概念

由方格纸所画等腰三角形,说出等腰三角形及相的腰、底边、顶角、底角的概念。

并给出等边三角形的概念:三条边相等的三角形是等边三角形。同时在概念的基础上理解等腰三角形与等边三角形的关系。活动三:一张白纸,如何折出一个等腰三角形

AAD白纸片沿虚线对折BCDB

剪下△ABD思考:这样折出的△ABC为什么就是等腰三角形呢?

意图:让学生积极地参与到活动中来,都能成为数学活动的一分子。活动四:等腰三角形除了有两条边相等外,还有其他什么结论?(学生小组讨论)

由于等腰三角形是轴对称图形,把△ABC对折,使两腰AB、AC重叠,则折痕AD就是对称轴,因此可以得出一系列等腰三角形的性质。

结论:等腰三角形的两个底角相等(简称“等边对等角”)

“三线合一”——等腰三角形底边上的中线、顶角的平分线、底边上的高线互相重合。

意图:(1)留给学生充足的时间和空间进行实践、探究和交流。(2)设计活动情境,让学生通过画一画、折一折,合作讨论和探索交流,发现不同的等腰三角形有着类似的特征——两底角相等、“三线合一”。由学生探讨、归纳得出规律,充分发挥学生学习的积极性,体现了教学过程中学生的主体地位。

3、应用新知,尝试成功 尝试练习一:

(1)如果等腰三角形的一个底角为50°,则其余两个角为 和 ;

(2)如果等腰三角形的顶角为80°,则它的一个底角为 ;(3)如果等腰三角形的一个外角为70°,则它的三个内角为 ;

(4)如果等腰三角形的一个外角为100°,则它的三个内角为 ;

(5)等边三角形的一个内角为,为什么?

意图:通过本练习,巩固理角等腰三角形“等边对等角”的性质和等边三角形的性质;特别通过练习(4)设计,得出不同的结果,培养学生思维的开放性与灵活性。

尝试练习二:

如图,房梁上放一把三角尺(等腰直角三角形),从顶点A挂一条铅垂线,使线经过三角尺斜边的中点O。这根房梁是否保持水平呢?为什么?

意图:此例与引入课题时提出的问题模型呼应,体现了数学来源于实践,反过来又作用于实践的辩证唯物主义的观点。培养学生学数学,用数学的意识。

4、课堂小结,掌握方法

(1)小结本堂课的收获。(学生畅所欲言)

(2)掌握方法:等腰三角形的性质提供了说明两角相等的常用方法;“三线合一”是说明两条线段相等、两个相等及两条直线互相垂直的依据。

5、布置作业,课外拓展 教材156页第5、6题

设计说明

1、问题是数学的心脏。问题的解决允许运用直观的方法,还应当鼓励学生不停留在直观的认识上,要进行合情的推理、精确计算,科学地判断。本教学设计把“问题”贯穿于教学的始终,运用“提出问题——探究问题——解决问题”的方式,让学生发现规律和运用规律,使学生在长知识的同时,也长智慧、长能力,进一步培养学生良好的思维品质。

2、让数学思想方法渗透于课堂教学之中。本教学设计引导学生通过折一折的手段来运用于“转化”思想,将等腰三角形转化为轴对称变换。同时渗透数学与实践相结合的辩证唯物主义思想,培养学生的应用意识。

3、由于学生对等腰三角形的知识已有初步的认识,本教学设计的难点突破应在等腰三角形的“三线合一”及其应用上,创设有利于学生学习的情境(生活中的事例),通过“折”这一直观方法引导学生进行积极主动地探索、交流去发现,从而习得知识和经验,提高能力和兴趣。

《相似三角形的性质》教学设计 篇2

《相似三角形的性质》教学设计

教学目标:

1、知识与技能

(1)、理解掌握相似三角形周长比、面积比与相似比之间的关系;掌握定理的证明方法。

(2)、灵活运用相似三角形的判定和性质,提高分析,推理能力。

2、过程与方法:

(1)、对性质定理的探究经历观察——猜想——论证——归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度。

(2)、通过实际情境的创设和解决,使学生逐步掌握把实际问题转化为数学问题,复杂问题转化为简单问题的思想方法。

(3)、通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力。

3、情感与态度:

在学习和探讨的过程中,体验特殊到一般的认知规律;通过学生之间的交流合作,在合作中体验成功的喜悦,树立学习的自信心;通过对生活问题的解决 ,体会数学知识在实际中的广泛应用。

教学重点:相似三角形性质定理的探索及应用

教学难点:综合应用相似三角形的性质与判定探索三角形中面积之间的关系

教学方法与手段:探究式教学、小组合作学习、多媒体教学

教学过程:

一、创设情境,引入新课

1、我们已经学了相似三角形的哪些性质?

2、问题情境:

某施工队在道路拓宽施工时遇到这样一个问题,马路旁原有一个面积为100平方米、周长为80米的三角形绿化地,由于马路拓宽绿地被削去了一个角,变成了一个梯形,原绿化地一边AB的长由原来的30米缩短成18米。现在的问题是:被削去的部分面积有多少?周长是多少?你能解决这个问题吗?

二、实践交流,探索新知

1、看一看:

△ABC与△A′B′C′有什么关系?为什么?

2、算一算:

△ABC与△A′B′C′的相似比是多少?

△ABC与△A′B′C′的周长比是多少?面积比是多少?

3、想一想:

你发现上面两个相似三角形的周长比和相似比有什么关系?面积比与相似比又有什么关系?

4、验一验:是不是任何两个相似三角形都有此关系呢?你能加以验证吗?

5、在学生思考、讨论的基础上给出证题过程(多媒体)

6、归纳小结;相似三角形性质定理2

相似三角形的周长比等于相似比,面积比等于相似比的平方。

三、基础训练,加深理解

练一练:已知两个三角形相似,请完成下列表格:

归纳:周长比等于相似比;已知相似比、周长比,求面积比要平方,已知面积比求相似比或周长比则要平方。

四、综合应用,解决问题

已知:如图,△ABC,DE//BC,且△ADE的面积等于梯形BCED的面积,则△ADE与△ABC的相似比是

五、拓展延伸,共同提高

1、如图,在△ABC中,点D、E分别是AB、AC的中点。(1)找出图中的各对相似三角形;

(2)各对相似三角形的相似比分别是多少?面积的比呢?

ADEOBC2、如图,△ABC是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?

六、回顾反思,畅谈心得

本节课你有何收获?

1、这节课我们学到了哪些知识?

2、我们是用哪些方法获得这些知识的?

3、通过本节课的学习,你有没有新的想法或发现?你觉得还有什么问题需要继续讨论吗?

七、布置作业

1、作业本2、3(2)(3)、4、5

2、探究推理过程课外整理完成,各组自行组织讨论交流。

教学设计说明:

1、本节课从一个较为实际的生活情境引入,设置问题悬念,激发学生的求知欲望,使学生掌握将实际问题转化为数学问题的思想方法,感受数学知识在生活中的广泛应用。

2、性质定理2的学习和探索,注重于知识的形成过程,使学生体验特殊到一般的认知规律,以及由观察——猜想——论证——归纳的数学思维过程。

3、由问题的解决变式到例题,再经例题加以拓展延伸,使本节内容衔接更趋自然,同时使学生充分体会类比的数学思想以及图形之间的互相联系。

4、教学中注重小组之间的合作交流,在合作中加强学生的团体意识,体验成功的喜悦,树立学习的自信心。

等腰三角形性质教学设计[优秀 篇3

12.3.1

等腰三角形

河南省新乡市第十中学

程宏

一、教学目标

1、知识技能:

(1)掌握等腰三角形的性质。

(2)运用等腰三角形的性质进行证明和计算。

2、数学思考:

(1)观察等腰三角形的对称性,发展形象思维。

(2)经历等腰三角形性质的探究过程,在实验操作、观察猜想、推理论证的过程中发展学生合情推理和演绎推理能力。

3、问题解决:

(1)通过观察等腰三角形的对称性,培养学生观察、分析、归纳问题的能力。(2)通过运用等腰三角形的性质解决有关问题,提高运用知识和技能解决问题的能力,发展学生的应用意识、创新意识、反思意识。

4、情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

二、教学方法:实验法和探究法。

三、重难点:

重点是等腰三角形的性质及应用。

难点是等腰三角形性质的证明。

四、教学过程

(一)创设情境,引入新课

人类的聪明智慧让我们看到了一个又一个令人惊叹的奇迹,下面请同学们观察这几幅图片,看看这些伟大的人类建筑中都含有一个什么样的基本图形? 师1:同学们,这几张图片中共同存在的基本图形是什么?

等腰三角形以它那对称、和谐、庄重、典雅之美成为我们数学殿堂的一枚瑰宝,可现实生活中为什么这些建筑要设计成等腰三角形的形式呢?等腰三角形有什么特殊的性质吗?今天就让我们一同来走进这个美妙的图形。(板书)12.3.1 等腰三角形

(二)探究发现,学习新知 1.认识等腰三角形 师1: 在小学时我们就知道两条边相等的三角形叫做等腰三角形。

下面我们利用剪纸的方法将手中的矩形纸片变变形。请大家跟着老师一起做:先将纸片向下对折,再把角斜向下折叠,沿折痕剪下,打开就得到一个等腰三角形。

观察这个等腰三角形,我们称相等的边叫做——腰,那么另一边叫做——底边,两腰的夹角叫做——顶角,腰和底边的夹角叫做——底角。2.探究等腰三角形的性质

(1)观察猜想

师1: 接下来,我们再度观察手中的等腰三角形,它是轴对称图形吗?为什么? 师2: 仔细观察:将等腰三角形ABC沿折痕对折,请大家找出其中重合的线段和角。哪位同学可以发表一下自己的看法?

师3: 这些线段是互相重合的,它们存在什么数量关系?重合的角呢? 师4: 通过刚才的分析,由这些重合的线段和角,你能发现等腰三角形的性质吗?说一说你的猜想。

(板书)猜想①等腰三角形的两个底角相等。猜想②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(2)实验操作

师1: 请同学们用心观察等腰三角形ABC:随着等腰三角形的形状变化,观察两个底角是否永远相等?这说明什么?

师2:请同学们再认真观察,随着等腰三角形的形状变化,AD是否永远是顶角的平分线、底边上的中线、底边上的高?这又能说明什么?

(3)推理论证

师1: 来看猜想1等腰三角形的两个底角相等。将这个命题改写成“如果—那么—”的形式,该如何叙述?

师2: 这个命题的题设和结论分别是什么? 师3: 如何进行证明呢? 师4: 谁还有其它证明方法吗?

今天大家从不同角度添加辅助线,将等腰三角形问题转化成全等三角形问题,进而证明出等腰三角形的性质1,接下来,请大家将性质1齐读1遍。性质1简称:等边对等角。下面我们用符号语言描述性质的因果关系。同学们一定要注意,在应用“等边对等角”时必须是在同一个三角形中。师5: 由性质1的证明过程,你能不能证明出猜想2呢?下面让我们一同观察性质1的证明过程,在作出等腰三角形顶角平分线的基础上,由三角形全等,我们还能得到什么结论?

师6: 类比这种证明方法,当我们作出等腰三角形底边上的中线时,又能得到什么结论呢?

师7: 当我们作出底边上的高呢?

经过证明它平分顶角并平分底边。通过刚才的证明,我们得到三个结论,这三个结论我们能否用一句话概括?也就证明出了性质2。接下来,我们来看一组填空题,这就是性质2的数学符号表述。仔细观察这三组符号语言,在等腰三角形的前提下,我们只要知道顶角平分线、底边上的中线、底边上的高这三个条件中的任意一条,即可推出其余两个是成立的。

等腰三角形的性质为我们今后证明两条线段相等、两个角相等提供了重要依据。

3.辩证思考等腰三角形的性质:

我们再来看性质2“等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合”,那么底角的平分线,腰上的中线和高是否互相重合?请大家动手折叠来说明。师1: 重合吗?

所以等腰三角形的性质2必须强调的是顶角平分线、底边上的中线、底边上的高互相重合。

(三)理解记忆,实际应用

利用我们今天所学的主要内容:等腰三角形的性质,能解决什么样的具体问题?请看例1,独立思考第(1)(2)问,有答案,请举手。

师1: 请大家观察∠BDC是等腰△ABD的外角,思考∠BDC与∠A有何数量关系?

师2: 思考第(3)问,如何求各角的度数?请同学们在练习本上求解第(3)问。

师3: 答案是什么?

这道题目我们结合图形,利用方程进行求解,可以使我们的表述更加清晰。下面请大家再看一个例题,齐读例2,有思路,请举手回答。师4: 谁还有其它不同的方法得出∠1?

(四)反馈新知,巩固练习。下面,我们进行两组小练习,看看谁的速度快?

师1: 通过这两个题目,你有什么发现?我们发现在等腰三角形中,若已知角为锐角,则它既可以作为顶角,也可以作为底角,需要分情况讨论;若已知角为钝角,则它只能作为顶角。

(五)回顾反思,归纳升华。

通过今天的数学学习,你有哪些收获?

(六)划分层次,布置作业。

(A)P56

1,4;(B)P56

1,4,6.最后,给大家布置一个兴趣作业:利用等腰三角形设计一个电子作品。同学们,让我们用心去体悟图形的美,努力去创造美,炫出我们的精彩吧!

一键复制全文保存为WORD