最新小数的意义教学设计一等奖(优秀10篇)

作为一名默默奉献的教育工作者,编写教学设计是必不可少的,教学设计是把教学原理转化为教学材料和教学活动的计划。如何把教学设计做到重点突出呢?这次为您整理了最新小数的意义教学设计一等奖(优秀10篇),希望能够给予您一些参考与帮助。

小数的意义教学设计一等奖 篇1

人教版数学四年级下册p50-51

本节教学内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的,是学生系统学习小数的开始。

小数实质上是十进分数的另一种表示形式,其依据是十进制位值原则。教材着重从“小数是十进分数的另一种表示形式”来说明小数的意义,使学生明确“分母是10、100、1000……的分数可以用小数来表示。”

三年级学生已经初步认识了分数和小数,再次基础上,课前让学生进行复习。在课堂上通过练习题进行新知的教学,先由教师指导学生认识一位小数,在学习两位小数和三位小数的时候,放手让学生小组探究,体现学习的自主性。通过直观的图形帮助学生理解小数的意义,知道分母是10、100、1000……的分数可以用小数表示。通过想一想、说一说、议一议等活动使学生认识小数的计数单位和数位,掌握小数的计数单位间的进率是10。通过一系列练习巩固认识小数的意义。

1、利用米尺和面积图研究分数和小数之间的关系,感悟小数的意义:分母是10、100、1000……的分数可以用小数表示。理解小数是十进分数的另一种表示形式。

2、认识小数的数位和计数单位。

3、知道小数每相邻两个计数单位间的进率是10。

理解小数的意义

小数每相邻两个计数单位间的进率是10

课前谈话:三年级我们已经认识了小数,课前也带领大家根据学案复习了小数的知识,并要求大家把你写的小数进行了分类。

下面请同学们给同桌读一读你写的分数和小数,并互相说一说分类结果

课件出示学案内容

一.复习导入

(出示一位学生的分类结果)

师:请这位同学来回答,你把这些小数分成了几类?

生:三类

师:你是怎么想的?

生:小数点后面只有一位的是一类,小数点后面是两位的是一类,小数点后面三位的是一类

师:你们分的和他一样吗?

小数点右边的部分是小数部分(板书补充数位顺序表)

小数部分只有一位的小数叫做一位小数,那小数部分只有两位的小数呢?

生:两位小数

师:三位的呢?

生:三位小数

师:今天我们一起来探究小数的意义(板书:小数的意义)

【设计意图:三年级已经初步认识了小数,会写以米、元作单位的小数,并理解其意义。在此基础上,也能用小数表示面积图和线段图中给定部分,因此利用课前复习关于小数的知识,为本节课的学习做准备】

二、新授

(一)认识一位小数

1、出示尺子图

师:看这幅图,你是怎样填的?

生:分数:1/10米,小数:0.1米

师:你是怎么想的?

生:把1米平均分成10份,其中的一份是1/10米,用小数表示是0.1米。

师:谁再来说一说?

2、出示面积图

师:再看这个图,你还能用分数和小数表示吗?

生:分数是1/10,小数是0.1

师:为什么它也能用0.1表示?

生:涂色部分表示把正方形平均分成10份,取其中的一份,用分数表示是1/10,用小数表示是0.1.

师:其他同学同意吗?也就是说它们都表示1/10。即1/10=0.1

(出示课件:1/10=0.1)

3、出示第二幅面积图

师:那现在涂色部分是多少?

生:分数是3/10,小数是0.3

师:0.3表示什么意思?

生:把正方形平均分成10份,取其中的3份,就是3/10,分数是0.3

师:0.3里面有几个0.1?

生:0.3里面有3个0.1

4、出示

师:你还能用分数和小数表示涂色部分吗?给同桌说一说,并且说一说每个小数表示的意义

(同桌互说)

汇报:

师:第一个谁来说?

生:分数是6/10,小数是0.6

师:0.6里面有几个0.1?

生:0.6里面有6个0.1

师:第二个是多少?

生:分数是9/10,小数是0.9

师:0.9表示什么?

生:把正方形平均分成10份,取其中的9份,就是9/10,小数是0.9

师:0.9里面有几个0.1?

生:0.9里面有9个0.1

5、课件出示

师:这是我们刚才得到的几组小数和分数,观察这些分数,有什么特点?

生:分母都是10,都是平均分成了10份得到的

师:也就是十分之几的数,十分之几的数我们可以用几位小数表示?

生:一位小数

师:十分之几的数用一位小数表示(课件出示)

给同桌读一读这句话

6、课件出示

师:我们再回到这个图,现在涂色部分是0.9,也就是9个0.1,如果再添一份是多少?

出示

生:10/10、1

师:十分之十就是1

1里面有几个0.1?

生:1里面有10个0.1(课件出示)

7、出示

师:这个图怎么表示?

生:1.2

师:1.2里面有几个0.1?

生:1.2里面有12个0.1(课件出示)

8、出示

师:同学们仔细看,你发现了吗?一位小数都可以看做几个0.1(引导学生说)

0.1就是一位小数的计数单位,读作十分之一(补充数位顺序表)

十分之一所占的数位就是十分位(补充数位顺序表)

师问:十分位的计数单位是什么?

生:十分之一

师:十分位所占的数位是?

生:十分位

师:老师在说一个小数:0.8

8在哪一位?(生:十分位)

它的计数单位是什么?(生:十分之一)

有几个这样的计数单位?(生:8个)

【从直观的尺子图入手到较抽象的面积图,在对比中理解0.1的意义,逐渐递进,在不断理解几个0.1的基础上,认识一位小数的计数单位和数位。在老师的引导下,问题的深入中帮助学生理解】

(二)认识两位小数、三位小数

1、自主探究

师:刚刚我们认识了一位小数的意义、数位和计数单位。那两位小数、三位小数呢?

接下来请同学们根据学案内容,结合老师给你的问题进行自主探究。

先请一位同学读一读

学生活动

2、练习反馈

师:同学刚才讨论的很积极,这几个问题都解决了吗?

那老师出几个问题考考大家

3、出示

师:涂色部分是多少?

生:分数是1/100,小数是0.01

师:你怎么想的?

生:把正方形平均分成100份,其中的一份是1/100,小数是0.01

师:谁再来说一说?

出示

师:这一个呢?

生:分数是4/100,小数是0.04

师:0.04里面有几个0.01?

生:有4个0.01

出示

师:这是多少?

生:分数是21/100,小数是0.21

师:0.21里面有几个0.01?

生:有21个0.01

4、认识两位小数的计数单位和数位

师:两位小数的计数单位是什么?(生:0.01)

也可以说是百分之一(补充数位顺序表)

百分之一所占的数位是?(生?百分位)(补充顺序表)

两位小数表示的是?(生:百分之几的数)

5、三位小数的意义

出示

师:再看这个图,涂色部分是多少?

生:分数是1/1000,小数是0.001

师:0.001表示什么?

生:把一个物体平均分成1000分,取其中的一份,就是1/1000,也就是0.001

师:谁再来说?

出示:0.125

师:再看这个数,是多少?(生:零点一二五)

没有图了,你还能说出他的意义吗?

生:把一个物体平均分成1000份,取其中的125份就是125/1000,用小数表示是0.125

师:0.125里面有几个0.001?

生:有125个

6、三位小数的计数单位和数位

师:三位小数的计数单位是什么?(生:0.001)

也可以读作千分之一

千分之一所占的数位是?(生:千分位)

(补充数位顺序表)

三位小数表示的是什么数?(生:千分之几的数)

【设计意图:在认识一位小数时,由教师带领学习,而在认识两位小数和三位小数时,则放手让学生自主探究,利用认识一位小数时的学习经验进行学习】

7、延伸

师:那四位小数呢?(生:万分之几)

计数单位是?(生:万分之一)

往下说的完吗?(生:说不完)

我们可以用省略号表示(补充数位顺序表)

8、拓展

师:小数部分有没有最小的计数单位?

生:有

师:有不同意见吗?

生:没有最小的计数单位,因为我们把物体平均分成10份,又平均分成100份,1000份,越分越小

师:你们听懂了吗?

想一想,0.1是怎么得到的?

生:平均分成10份,1份是0.1

师:那0.01就是平均分成100份,取其中的一份。0.001就是平均分成1000份,取其中的一份,随着分的分数越来越多,一份就越来越小,如果我继续分下去能分完吗?越往下分越小,那有没有最小的计数单位?

生:没有最小的计数单位。

师:小数部分有没有最大的计数单位?

生:十分之一

9、修改数位顺序表

师:拿出你刚才写的数位顺序表,看一看你写的对吗?

有问题的修改一下

(三)计数单位间的进率

1、出示:

师:第一个图的涂色部分用小数表示是?(生:0.1)

第二个图的涂色部分用小数表示是?(生:0.10)

你发现了什么?

生:两个图的涂色部分一样大

师:也就是他们大小相同。(出示:0.1=0.10)

有什么不同吗?

生:平均分的份数不同,一个平均分成了10分,一个平均分成了100份

师:对不对?第一个平均分成了10份,取其中的一份,第二个平均分成100份,取其中的10份

第一个表示1个0.1,第二个表示10个0.01

你还有什么发现?

生:10个0.01是0.1(板书)

师:一起读一遍

2、出示(由1个0.1增加到10个0.1)

生一起数到1

师:你发现了什么?

生:10个0.1是1

师:(板书)再读一读

3、小结

师(指数位顺序表):你有什么发现?

生:进率是10

师:对,小数和整数一样,相邻两个计数单位间的进率是10

小数的意义教学设计一等奖 篇2

教学内容

苏教版《义务教育课程标准实验教科书 数学》三年级(下册)第100~101页。

教学目标

1. 使学生经历认识小数的过程,初步了解小数的含义,会读、写一位小数,知道小数各部分的名称,知道自然数和整数。

2. 使学生在解决实际问题的过程中,培养初步的自主探究、合作交流的意识,感受数学和生活的密切联系,增强学好数学的信心。

教学过程

出示:1/2 58 5/12 0.5 1.2 5.8

提问:同学们,知道这些数分别是什么数吗?

谈话:后面的三个数,你平时在什么地方见到过?

学生可能会想到:铅笔芯的规格、眼睛的视力、商品的价格等。

揭题:是的,在日常生活中经常接触到这样的数。它们都是小数,今天我们一起来认识小数。(板书课题:认识小数)

1. 提出问题。

提问:你想了解小数的哪些知识?

学生可能提出:小数是怎么来的?学了小数有什么用处?小数应该怎样读,怎样写?……

2. 教学第一个例题。

谈话:同学们想知道小数是怎样产生的吗?其实小数就来自我们的生活。先让我们来做这样一个活动:小组合作测量课桌面的长和宽,并用不同的数、不同的单位把测量结果表示出来。比一比,哪个小组想到的表示方法最多。

学生在小组内测量课桌面的长和宽,交流不同的表示方式。教师巡视,并作适当指导。

反馈:你们小组的测量结果是多少?想到几种不同的表示方法?

学生量出课桌面的长是60厘米,宽是40厘米,并用600毫米、60厘米、6/10米等表示课桌面的长,用400毫米、40厘米、4/10米等表示课桌面的宽。(根据学生回答,板书:6分米=6/10米,4分米=4/10米)

提问:除了上面几种表示形式外,你还能用其他方法来表示吗?

如果学生主动想到分别用0.6米、0.4米表示课桌面的长和宽,则让学生说一说是怎样想到的,0.6米和0.4米分别表示什么意思。

如果学生不能主动地用小数来表示,则讲述:其实,6/10米还可以用小数0.6米来表示,0.6读作零点六。(板书:= 0.6米 0.6读作零点六)也就是说把1米平均分成10份,其中的6份可以用0.6米表示。

提问:你能说一说0.6米表示的意思吗?

学生回答后,让同桌间互相说一说。

引导:那么4/10米还可以怎样用小数来表示呢?(板书:0.4米 0.4读作零点四)

提问:0.4米表示什么意思?

再问:那么你知道1分米是几分之几米吗?用小数怎么来表示呢?2分米、5分米、8分米呢?

学生交流时,分别让学生在米尺上指出0.1米、0.5米、0.8米的实际长度。

小结:十分之几米可以写成零点几米。

3. 做“想想做做”第1题。

先让学生弄懂题意,然后把答案填在书上。完成后,电脑出示答案,集体校对。

4. 教学第二个例题。

谈话:昨天三(5)班的李萍同学在育才商店里买了这样一些文具用品。我们一起来看看吧。

出示文具的图片及标价:

铅笔 圆珠笔 笔记本

3角 1元2角 3元5角

提问:一枝铅笔是3角钱,如果用元作单位,是多少元呢?(分别用3/10元和0.3元表示,并读一读、写一写。)

讨论:一枝圆珠笔的价钱是1元2角,怎样用元作单位,用小数来表示圆珠笔的价钱呢?请先在小组里讨论讨论,再说一说你是怎样想的。

反馈时,着重引导学生体会:1元2角是1元多2角,2角可以用0.2元来表示,1元和0.2元合起来就写成1.2元,1元2角可以写成1.2元。(板书:1元2角= 1.2元 1.2读作一点二)

提问:一本笔记本的价钱是3元5角,用元作单位的小数又怎么来表示呢?你是怎么想的?(板书:3元5角=3.5元 3.5读作三点五)

小结:几元几角写成小数就是几点几元。

5. 做“想想做做”第2题。

让学生在书上完成填空,并说一说是怎样想的。

6. 介绍自然数和整数。

让学生自由阅读书本第100页的最后一段,提出不懂的问题。

7. 游戏。

男同学代表整数,女同学代表小数,看到你所表示的数请你站起来。

8 0.2 3.8 0 59 95.4 1 1/4 1.6

谈话:我们已经认识了小数。现在我们以小组为单位,一起来进行比赛好吗?

1. 听录音,把听到的小数记录下来。

一只青蛙跳过0.4米的田埂,来到宽16.8米的河面上,踏上了0.2平方米的荷叶,狂叫三声,扑通一声掉进了深3.9米的河里。

2. 做“想想做做”第3题。

出示题目,让学生抢答,并说一说每道题中分数、小数的意义。

3. 回答下面的问题。

一包上好佳,价钱在1元到2元之间,请你猜猜它的价钱是多少?

小组合作讨论后把价钱写在纸上,交流时引导学生用“几元几角”和“几点几元”两种方式表达,并在数轴上分别找出每种可能价钱所在的点。

提问:今天你学得开心吗?你有什么收获?

课件介绍十进分数的发展史和古代数学家刘徽的杰出成就。

小数的意义教学设计一等奖 篇3

1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。

2.经历探索小数意义的过程,体会小数与生活的联系,培养归纳能力。

3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。

理解小数的意义。

理解小数的计数单位。

一、创设情境,复习引入

1.师:同学们,你们在日常生活中,都见过哪些种类的蛋呢?……看来大家见过的蛋还真不少。接下来,咱们一起走进《蛋的世界》,看看里面有多奇妙,好不好!这节课我们一起来探究小数的意义。(板书:小数的意义)

请同学们先回想一下,对于小数,你已有那些认识?……谁能举出一些小数的例子?并说说它表示的意义吗?

生1:0.2表示把一正方形平均分成10份,取其中的2份,是十分之二也就是0.2。

师:说得很好,谁再来说一个?

生2:0.5表示十分之五,

生3:0.4表示十分之四。

师:像这样的小数同学们都能说出来吧!(根据学生的回答,教师板书一组一位小数:0.2、0.5、0.4……,并说明一位小数表示十分之几)现在老师如果让你把这些小数用画图的方式表示出来,你能行吗?

生:能!

师:下面请同学们从这三个小数中,选择你喜欢的一个用画图的方式表示出来?好吗?

生:好!

师:哪位同学展示一下你画的小数?把你的想法和画法和同学们说一说?

生1:先画一条线段,平均分成10份,取其中的5份,是十分之五,也就是0.5。

师:老师想问问你,为什么取其中5份就是0.5?

生1:因为其中一份是0.1,5份就是0.5。

师:谁想再来展示一下?

生2:我先画一个长方形平均分成10份,取其中的2份,是十分之二,也就是0.2。

师:刚才同学们用自己喜欢的方法画出了自己喜欢的小数,看这些小数,它们都是几位小数?

生:一位小数。

师:一位小数他们画法虽然不同,但是有共同点。谁来说说这两种画法的共同之处?

生:都是把一个物体平均分成10份,然后再取其中几份,来表示小数。

2.谈话:看来同学们前面的知识掌握的不错,课前,老师从几种动物的蛋的质量中也搜集了一些小数,请同学们看大屏幕。(课件出示情境图)

二、结合情境,探究新知

1.学习小数的读写。

(1)师:请同学们仔细观察情境图,你获得了那些数学信息?

(学生根据情境图说出信息)

师:这个小数读作?第二个小数读作?

这位同学读得非常正确,谁想再来读一读?谁来说说读小数时应注意什么?

(读小数时,小数点前面部分和整数读法一样,小数点后面部分依次读出每一个数。)

(2)师:谁来读一读下面这两条信息?这两条信息中有两个小数,谁能到黑板上把这两个小数写出来,其他同学写在练习本上。谁来说说写小数时应注意什么?

(写小数时,小数点前面部分和整数的写法一样,小数点后面部分依次写出每一个数。)

2.学习两位小数的意义。

(1)在正方形纸片上表示出0.25。

这组信息给我们提供了4个小数,像0.25、0.06这样的小数在图上怎样表示呢?老师为每位同学准备了一张画有正方形的纸,现在请同学们从这两个小数中选择一个小数在这个正方形中表示出来。

谁能到前面来说说你的想法和画法?

学生到前面交流。

师:你是把什么看作一个整体,平均分成( )份,表示其中的( )份,用分数表示是( ),0.25里面有( )个0.01。

老师想问问你,为什么取6份(或25份)就表示0.06(或0.25),一格(份)就是0.01,6份(或25份)就是0.06(或0.25)。

小数的意义教学设计一等奖 篇4

教学目标:

1、知识目标:使学生在经历实际测量的活动中,了解小数的产生。学生能理解小数的意义,认识小数的计数单位和相邻两个计数单位之间的进率。

2、能力目标:培养学生动手操作,观察,分析,推理能力和抽象概括能力。

3、情感目标:通过学习小数的产生和发展过程,提高学生学习数学的兴趣;增强对数学的理解和应用数学的信心。

学情分析:

小数的意义是一节概念教学课,是在学生学习了“分数的初步认识”和“元角分与小数”的知识下,以已有的经验为背景,让学生经历认、读、写小数的学习过程并理解小数的意义,体会小数与生活的密切联系,从而实现认识的提升。

教学重点:认识小数的产生和意义。认识小数的计数单位和相邻两个计数单位之间的进率。

教学难点:理解小数的意义。

教学过程:

1、回忆一下:我们学过什么长度单位?

2、请同学们看一下这条绳子,谁来估一估绳子的长度呢?请同学们都来量一量,验证一下结果。再来看看这根绳子,谁来估计一下它的长度,也请同学们上来量一量。刚才同学量的绳子的长度是30厘米,就是3分米,如果老师让大家用米来作单位。怎么表示呢?

3、刚才我们在测量这条绳子的时候,如果用米作单位,就得不到整数的结果。其实像这样得不到整数结果的例子在生活中还有很多很多,于是聪明的人们除了发明用分数来表示之外,还发明了用小数来表示,于是小数就产生了。

4、揭题。(板书:小数的意义)

(一)研究一位小数

1、出示米尺:这是什么?这是一把一米长的尺子,请同学们仔细看看,老师把这把米尺平均分成了多少份呢?每一份是多长?如果用米作单位,写成分数是多少?写成小数又是多少?

这样的3份是多长?写成分数是多少?写成小数是多少?这样的7份呢?

2、请同学们看,这几个小数的小数部分都只有一位,这样的小数我们把它叫做一位小数。

3、小结:我们把1米的尺子平均分成10份,这样的一份或几份可以用一位小数来表示。

4、说说你发现了什么?(分母是10的分数可以用一位小数来表示。)

(二)研究两位小数(自助探究)

1、如果我把1米的尺子平均分成了100份,1份是多长?用米作单位,写成分数是多少?写成小数是多少?4份呢?这样的8份呢?

2、像这样的小数,小数点后面有几位数,这样的小数我们叫做几位小数。

3、小结:我们把1米的尺子平均分成100份,可以用两位小数来表示。

4、说发现。

(三)研究三位小数。(自主探究)

1、如果我把这每一段再平均分成10份,那么整条米尺我把它分成了几份?1份是多长?用米作单位,写成分数是多少?写成小数是多少?6份呢?13份呢?请同学们再说2个用毫米作单位的长度。刚才这两位同学说出了5毫米,23毫米,请同学们拿出草稿本,把这两个长度用分数表示,再用小数表示。

2、像这样的小数,小数点后面有几位数?这样的小数我们叫做三位小数。

3、小结:我们把1米的尺子平均分成1000份,可以用三位小数来表示。

4、说发现。

(四)推导

1、如果我把1米的尺子平均分成了10000份,写成分数应该是几位小数呢?看来同学们的学习能力很强是,能够通过前面的知识,推出后面所学的知识。

1、讨论:分数和小数有怎样的联系呢?请同学们小组讨论,概括出分数和小数的联系。

刚才同学们通过讨论得出,分母是十的分数可以用一位小数来表示。分母是一百的分数可以用两位小数来表示。分母是一千的分数可以用三位小数来表示。这个就是小数的意义。

1、填一填。

(1)0.3里有()个1/10,0.7里有()个1/10。0.04里有()个1/100,0.08里有()个1/100。

填一填,说说你是怎么想的。

像这样,0.3、0.7这样的一位小数,我们都可以看成是由若干个0.1来组成的,那么我们就说十分之一是一位小数的计数单位。读作十分之一,写作0.1。(板书:一位小数的计数单位时十分之一,写作:0.1)

同样的道理,像这样,0.04、0.08这样的两位小数,我们都可以看成是由若干个0.01来组成的,那么我们就说百分之一是两位小数的计数单位。读作百分之一,写作0.01。(板书:两位小数的计数单位时百分之一,写作:0.01)

请同学们猜一猜,三位小数的计数单位是什么?写作什么?(板书:三位小数的计数单位是千分之一,写作:0.001)

2、0.1里有()个0.01,0.01里有()0.001。小组讨论,汇报。

0.1里有10个0.01,我们就说0.1与0.01的进率是10,同样道理,0.01里有10个0.001,说明他们的进率也是多少?

课件出示练习。

这节课你有什么收获?

小数的意义教学设计一等奖 篇5

人教版义务教育课程标准实验教科书数学四年级下册第50-51页。

1、理解小数的产生和意义,认识小数的计数单位及进率。

2、通过抽象概括,培养学生初步的逻辑思维能力。

3、结合教材和教学,有机渗透“实践第一”与“事物之间是普遍联系”的辩证唯物主义观点的启蒙教育。

教学重点:概括小数的意义,认识其计数单位和进率。

教学难点:理解小数的意义,掌握分数单位与小数单位之间的关系。

课前准备:请学生测量自己周围的物体,如课桌、黑板、门窗、大幅挂图等的长与宽(或高),整理收集好数据。

一、导入

1、我们数学课本的定价是多少元?(板书:5.10元)小明的身高是1.21米,小兰的体重是38.2千克(板书:1.21米、38.2千克)。你们知道这些都叫什么数吗?我们在哪册课本中学过?小数是怎样产生的?

2.请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按“整米数”和“非整米数”两类板书)这些不够整米数的部分,如果仍然要用“米”作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读课本内容。

3.师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。(板书:小数的产生)但是,小数的意义又是什么呢?这节课,我们就来着重研究它。

二、新授

1、3分米是怎样写成小数0.3米的呢?同学们请看(出示一把米尺),这把米尺的总长是1米,把它平均分成10份。每份是多少?1分米是几分之几米?把1/10米写成小数是多少米?小数点右边有几位小数?左边的数位上写什么?(板书:0.1米)

那么,3分米是几分之几米?写成小数是多少米?小数点右边有几位小数?(板书:3/10米、0.3米)7分米是几分之几米?写成小数是多少米?小数点右边有几位小数?(最后让学生把测量实物得到的数据也写成以米为单位的小数,同桌互相检查评改)

归纳小结:把分米数写成以米为单位的数,得到的是十分之一或十分之几米的数,可用一位小数来表示。(板书:一位小数)

2、把1米平均分成100份,每份就是1小格,这1小格是多少?写成分数是几分之几米?把它写成小数是多少米?小数点右边有几位小数?左边写什么?(板书:1厘米、1/100米、0.01米)

启发学生类推:谁能说出3厘米、6厘米各用分数和小数来表示是多少米?(同时让学生在书上的括号里写出来,并指名一生板演填空)各有几位小数?3和6写在小数点右边的哪位上?(再让学生把测量实物得到的数据写成以米为单位的小数,同桌互相检查评改)

归纳小结:把厘米数写成以米为单位的数,得到的是百分之一或百分之几米的数,有几位小数?(板书:两位小数)

3、把1米平均分成1000份,每份是多少?(板书:1毫米)(用投影仪显示1厘米中的“毫米”小格)这1毫米是几分之几米?怎样写成小数?小数点右边有几位小数?(指名一生板演填写,其他学生写在练习本上)6毫米、13毫米怎样写成分数和小数?小数点右边的第一、第二、第三位上。各表示几个1/1000米呢?

引导小结:把毫米数写成以米为单位的数,得到的是怎样的分数?能写成几位小数呢?(板书:三位小数)

(布置学生将收集到几分米、几厘米、几毫米的数写成以米为单位的小数,然后互相检查评改)

4、如果继续分下去,得到1/10000、1/100000……的数。能写成几位小数?你会写吗?试一试,再互相检查。

5、归纳概括。用投影仪显示下列问题。

在上面的例子中,这些分数都能直接写成小数,这些分数的分母分别是多少?

表示十分之几、百分之几、千分之几……的分数,它的分数单位各是多少?每相邻两个计数单位间的进率是多少?(如:1/10里面有多少个1/100?)与整数的进率有什么联系和区别?

像这种分母是10、100、1000……且相邻的计数单位的进率是10的分数,可以怎样依照整数的写法写成小数?

因为整数左边数位上的数是右边相邻数位上的数的10倍,所以小数数位也可以从左到右由高位到低位排列,在整数与小数部分之间用小圆点(小数点)隔开来。

小数的 计数单位有哪些?同分数单位有什么联系与区别?(引导学生对照板书内容想一想、比一比、议一议,然后回答)

6、让学生阅读课本上有关的内容后,完成课本上“做一做”的练习,最后让同桌学生互相说说:自己测量得到的数据是怎样写成小数的?

三、全课总结、质疑

四、巩固练习

1、口答:在5/10、1/2、1/100、1/15、1/80等数中,哪些分数能直接写成小数?为什么?写成的。小数是多少?

2、口答:判断对错,错的要订正。

(1)11/1000写成小数是0.011米。

(2)0.18是18个0.1。

(3)0.33的计数单位是百分之一。

(4)0.57表示百分之五十七。

3、抢答。(看到小数答相等的分数,看到分数答相等的小数)

0.5 16/100 0.25 4/1000 0.075

4、书面作业。(略)

5、机动题:在下面的○里填上“>”、“<”或“=”。

8/10○0.08 96/100○0.95

4角○0.4元

6、思考题:113毫米、15厘米用小数表示出来是多少米?

[评析:小数的意义是本节课的教学重点,由于小学生的年龄和认知特点,对于小数的意义无论在表述上,还是在理解上都有一定的困难。在设计教学过程时,本课有如下特点:

1、充分感知,使学生明确小数的产生源于实践。

认知规律告诉我们,要使学生形成表象,加强感知是必不可少的。教学中,教师首先从贴近学生生活实际的身高、体重、书本价格的表示中。引出了小数在实际生活中有着广泛的应用,使学生明白小数的产生源于生活实践,激发了学生学习小数的兴趣和强烈的求知欲望。接着又通过测量门窗、黑板、课桌、大幅挂图等实物的长度和宽度的实际操作活动,使学生明白不能得到整米数的结果,这时也常用小数来表示。通过操作感知,使学生明确由于日常生活、生产的需要,从而产生了小数,渗透了“实践第一”的辩证唯物主义观点的启蒙教育。

2、凭借表象。展开联想推理。

建立表象后,以表象为依托,通过观察米尺,联系 旧知,结合采集的数据有层次地展开联想推理。教师引导学生通过回忆、复习,把分米数、厘米数改写成用分数形式表示的米数,再改写成小数表示的米数。从而说明十分之几的数用一位小数表示,百分之几的数用两位小数表示。把毫米数改写成米数时,通过知识迁移,引导学生写出三位小数,并类推出千分之几的数用三位小数表示。在教学中,通过“观察分析实例一联想类推一结论”的过程,找到了分数(特定分母)与小数在数位、定义、进率等方面的实质性联系,为小数意义的抽象概括作了充分的铺垫。这样,学生不但学得轻松,而且培养了学生分析、联想类推的能力。

3、培养学生抽象概括的能力。建立新的认知结构。

教师不失时机地充分利用教材,引导学生通过“想、议、比、读”等方法,抽象概括出小数的意义。在这个过程中,教师主要抓住三点:

(1)抓住位数的扩展规律这根主线,界定能仿照整数写法的特定分数的范围;

(2)通过小数的特征,建立抽象的概念——小数的意义;

(3)联想、分析、概括小数的意义。在学生有了充分的感性认识的基础上,通过自学课本及教师的启发。逐步理解小数意义的各个要素。

然后教师设疑:

(1)能直接写成小数的分数,它的分母是多少?

(2)表示其中一份的分数各是多少?相邻两个计数单位间的进率是多少?为什么?与整数相邻的计数单位间的进率有什么联系和区别?

(3)像这种分母是10、100、1000……的分数。可以怎样依照整数的写法写成小数?

(4)小数的计数单位有哪些?让学生借助教材分析讨论,使学生在回顾知识的同时。加深对知识的理解。学生对小数的意义有了潜在的理解后,教师及时地引导学生抽象概括,使学生学习小数的意义有一完整、清楚的认识,能够较完整地表达出小数的意义。形成新的认知结构。

4、把握训练内容,巩固强化新知。

练习不仅是内化和巩固对知识的理解。而且是形成基本技能与发展智力的重要手段。本节课紧紧围绕小数的意义和小数的计数单位两方面,设计多层次的练习。在练习中注意思维步骤的物化,按照“一看、二比、三写、四查”的步骤思考和运 作,从而有效地培养了学生良好的学习习惯。

同时,多媒体动态直观的演示、正确新颖多渠道的反馈形式、风趣生动的教学语言以及简洁科学的板书设计,牢牢吸引了学生的注意力,使教学目标顺利达成。

小数的意义教学设计一等奖 篇6

1、知识技能目标:

通过本节课的学习,让学生理解小数的产生及其意义,掌握小数的读法与写法。使学生在现实的情境中,初步理解小数的含义,学会读、写小数,体会小数与分数的联系。

2、过程与方法:

培养学生观察、分析、交流、合作的意识,帮助学生建立起自我评价与反思的意识。

3、情感态度价值观:

使学生在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的信心,激发学生学习数学的兴趣。

1、帮助学生通过自主探索和合作交流,理解小数的意义。这是本课的教学重点灺是本课的教学难点。

1课时。

1、多媒体。

2、课业本。

一、创设情境,激发兴趣,揭示课题。

1、引入:

开学前他们去超市买东西,为开学做准备。(cai出示:书包89元,橡皮元,新华字典48元,信封元,水彩笔32元,本子元,文具盒元)

2、走进超市,东西可真多啊!你知道有哪些商品,它们的价格是多少吗?

学生介绍。

可能说出:元3角

元5分

元4角6分

元10元9角

3、你能把这些商品价格分分类吗?并说说你是怎样想的?

学生可能这样分:89元、48元、32元分为一类,因为这些都是整数;元、元、元、元分为一类,这些都是小数。

4、生活中,你在哪里见到过小数?

学生可能回答:超市里商品的价格,文具店里文具的价格,书店里书店价格。教师可以提示些不同的,如:学生的身高:米,视力表,瓶子上升……,同时配合板书。

5、教师小结:

原来生活中这么多的小数,今天这节课我们就一起进一步研究小数。

(板书课题:认识小数)

二、引导学生感知小数的含义。

1、小数的读法。

(1)(cai只剩下小数的价格)请生读一读这些小数。

(2)师:这些小数你们都会读了,我写一个你们会读吗?

师写:请生读。师:

这两个“48”的读法为什么不一样?想一想,小数的读法与整数读法有什么不同?

(3)小结小数的读法:整数部分按读整数的方法读,小数部分从左往右顺次读。

(4)读一读:。

2、认识两位小数表示百分之几。

(1)一位小数与十分之几。

①师:1角是1元的几分之一?是几分之一元?你是怎么想的?

生:1元=10角,元是1角,元=元。

师配合板书:1元=10角元(1角)=元

②师:那么元是几分之几元呢?

生可能回答:元是元,元是元。

师配合板书:元(3角)=元

③师:你说一个一位小数的价格,并请同学说说它是几分之几元?

汇报:男女生对出题,互相做答。

(2)两位小数与百分之几。

①师:元是几分之几元?

生独立思考后汇报,老师配合完成板书:

1元=100分元(1分)=元

元(5分)=元

②师:元是几分之几元?

同桌互说后请一生汇报。

③师:(将改为)元是几分之几元?你会说吗?

师配合回答完成板书:46分=元=元

④师:你出一个两位小数的价格,请同桌说出它是几分之几?

同桌互说后,请一组汇报,并板书记录。

(3)练一练第1题的第(1)小题。

①出题后生独立思考。

②请生汇报。

3、试一试。

(1)(cai出示尺子,并指着1厘米处)

①这是多长?

学生可能回答:1厘米。

②师:如果用“米”作单位,你能说出它的长度吗?

学生汇报,师配合板书:

1米=100厘米1厘米=米=米

(2)师在图中指2个整厘米的长度,请生用“米”作单位说一说?

(3)在书上完成试一试的题目。生汇报,进行核对。

(4)师:对着尺子你能用“米”作单位说出这些整厘米的长度,你能说出一个这尺子没有的整厘米数,并请同桌用“米”作单位说一说吗?

4、读一读黑板上的分数与小数。

三、帮助学生抽象出小数的意义。

1、例2。

(1)(cai出示第1幅图)师:这是一个正方形,我们用整数“1”表示。

(cai出示第2幅图)师:看一看,涂色部分占整体的几分之几?学生回答:涂色部分占整体的。

(cai出示第3幅图)涂色部分占整体的几分之几?学生回答:涂色部分占整体的。

(2)写成小数是(),写成小数是()。

(3)能分别说出空白部分用分数和小数怎样表示吗?

学生汇报。

2、试一试。

(1)(cai出示试一试)生独立审题后完成,同时“比较每组的分数和小数,有什么发现?”

(2)比较上面每组的分数和小数,你能发现什么?

学生可能回答:十分之几的分数可以用一位小数表示,百分这几的分数用两位小数表示。

(3)师:是不是这样呢?看看用这个方法能不能完成看p30练一练第2题。

再请学生说说改写的方法。

(4)出示:写成小数是多少?呢?你能写一写,读一读吗?

为什么在小数点后添“0”?

(5)请学生汇报改写的方法。

(6)板书:分数小数

十分之几一位

百分之几两位

千分之几三位

四、巩固练习。

1、p32练习五1

2、p32练习五2

(1)出示后请生读一读这些小数,后独立完成是课业本上。

(2)说一说,分母各是多少?

3、p32练习五3

(1)完成在课业本上。

(2)说出各是几位小数。

4、p32练习五4

(1)想一想,用几位小数表示。

(2)口答第2行的结果,第1行写在课业本上。

为什么在小数点与“2”点添“0”?

5、p32练习五5

(1)一生读题。

(2)同桌互相说一说。

(3)请一生汇报。

五、总结。

1、今天的课上你学会了什么?

2、在学习中得到哪些经验?

小数的意义教学设计2

1、使学生结合具体情境初步体会小数的含义,能认、读、写小数部分是一位的小数,知道小数各部分的名称。

2、使学生进一步体会数学与生活的密切联系。

教学重、难点:能认、读、写小数部分是一位的小数,知道小数各部分的名称。

教具学具准备:课件。

一、复习

7分米=()米3角=()元

9厘米=()分米1分=()角

二、新授

1、认识整数部分是0的小数

出示情境图:芳芳和明明在量桌面的长和宽,看看他们量的结果是多少?

(长5分米,宽4分米)

这是用分米做单位的,如果用米做单位,5分米是几分之几米?4分米呢?(板书)

师:十分之五米还可以写成0、5米,0、5读作零点五。

十分之四米还可以写成0、4米,0、4读作零点四。

(板书补充)

完整的板书:

5分米米0、5米读作:零点五米

4分米米0、4米读作:零点四米

书空:0、5 0、4

齐读:零点五、零点四

2、认识整数部分不是0的小数

出示情境图:

能不能像刚才那样,把几元几角写成以元做单位的数?

1元2角,想一想,2角是多少元?那么1元2角是多少元?(板书)

3元5角呢?(板书)

完整的板书:

1元2角1、2元读作:一点二元

3元5角3、5元读作:三点五元

书空,齐读。

3、认识整数、自然数、小数及小数各部分名称

师:我们以前学过的表示物体个数的1、2、3是自然数,0也是自然数,他们都是整数。像0、5、0、4、1、2、3、5都是小数。小数中间的点叫做小数点,小数点的左边是整数部分,右边是小数部分。

板书:

0、1、2、3自然数整数

05、 04、12、 35小数

整小小

数数数

部点部

分分

分别说一说0、4、1、2、3、5的整数部分和小数部分各是多少。

三、想想做做

1:仔细观察图意,说说题目的意思。

照样子填写。

说一说每组3个名数之间的联系和区别

2、3:独立练习。

4:先同桌互说,再全班交流。

5:为什么0右面第一个点上填0、1?1右面第二个点上1、2?

独立填写其他的小数。

学生说很简单,我可不敢掉以轻心,在小数这一块出问题的可多着呢。要不要说意义?

小数的意义教学设计3

1.进一步理解小数的含义。

2.学生认识单名数和复名数,在明确各种计量单位和单位间进率的基础上,会进行简单的名数改写。

3.通过收集生活中的小数,体验生活中处处有数学。

使学生掌握单名数与复名数改写的方法,熟练的进行单名数与复名数改写。

熟练的进行时间单位单名数与复名数的改写。

一、引入新课

复习引入:

1千米=()米

1千克=()克

1米=()厘米

1吨=()千克

1时=()分

1分=()秒

1平方米=()平方分米

1平方分米=()平方厘米

在课前大家都收集了一些资料,把你收集到的生活中的小数说给小组同学听。

找一组同学汇报他们收集的数据。

二、新课学习

1、名数

老师也收集了一些生活中的小数,我们一起来看一看:课件出示。

糖果的质量是0、5千克,小明的身高是1、35米,小红体操得分是9、25分,小丽的体温是38、5度。

这些小数分别表示什么意思呢?你能说说自己收集的小数的含义吗?

在计量长度、面积、重量、时间时,得到的数都带有单位名称,如1米30厘米,125厘米,32千克,30、4千克……等.通常把量得的数和单位名称合起来叫做名数。

观察同学们说出的这些名数,有什么相同点和不同点?

相同点:都是测量的结果,有数有单位;

不同点:有的名数只带有一个单位名称,有的名数带有两个或两个以上的单位名称。

带有一个单位名称的名数,叫做单名数;带有两个或两个以上单位名称的叫做复名数。

大家能举出一些单名数和复名数的例子吗?

3分钟、7千米、6时15分、78平方米、4吨50千克、5米6分米、20平方厘米、9年、5千米60米。

2、例1

(1)80厘米=()米

引导学生观察:从这道算式中你发现了什么?

低级单位的名数能否转化为高级单位的名数呢?

应该怎样改写?学生汇报:说一说是怎样想的?

教师说明:因为100厘米=1米,80厘米=()米=0、80米,还可以这么算,80厘米=80÷100米=0、80米,其中的80÷100可以利用小数点移动的规律进行计算,缩小100倍也就是小数点向左移动2位,所以80÷100=0、80。

说一说你更喜欢哪种方法?

讨论:比较转化前后,什么变了,什么没变?

单位名称变了,数的大小变了,实际的多少没变。

让学生举出几个由低级单位转化为高级单位的例子。

归纳方法:用低级单位的数除以进率,商就是高级单位的数,余数就是低级单位的数。

练一练

(2)教师出示1米45厘米=()米

这道题与上面的题相比有什么不同?(是复名数改写成单名数)

引导学生讨论交流:怎样将复名数改写成单名数?你是怎样想的?

首先把1米45厘米写成1、

米,因为1米等于1米,所以1米再加45厘米就等于1、45米。还可以这么想,1米45厘米是145厘米,145÷100=1、45米。

练一练:

4千米180米=()千米

7米6厘米=()米

3、例2

0、95米=()厘米

可以怎样想?由高级单位名称改定成低级单位名称时,要用高级单位的数乘以进率,再加上低级单位的数.

想一想:1、32米=()厘米

可以这么想:1、32米=1米+0、32米=100厘米+32厘米=132厘米,还可以这么算:1、32米=1、32×100厘米=132厘米。

三、巩固练习

1.直接写出得数。

0、45×10=

1、6×100=

0、056×1000=

40、5÷100=

7、8÷1000=

0、7÷10=

3、06÷10=

3、06÷10=

2.小刚检查调查表时发现了许多错误,你能帮忙把错误改正过来吗?

张佳佳:

体重3、85千克

身高14、3米

早晨喝0、005千克牛奶。

四、课堂总结

1.这节课的学习内容是什么?

2.通过这节课的学习你有什么收获和体会?

3.还有什么疑问?

小数的意义教学设计一等奖 篇7

1.使学生在现实的情境中,理解小数的意义,掌握小数的读写方法。

2.使学生经历小数意义的探索过程,积累数学活动的经验,进一步发展数感,培养观察、比较、抽象、概括以及合情推理的能力。

3.使学生能体会到小数与日常生活的密切联系,增强自主探索与合作交流的意识,树立学好数学的自信心。

理解小数的意义,会正确读写小数。

一、导入

同学们,我们在三年级的时候就认识了这样的一些小数,今天这节课我们将进一步学习有关小数的知识,让我们一起来认识小数的意义和读写法。(板书课题)

二、回顾旧知,铺垫新知

1、(1)生活中,许多地方都能看到小数,你在那些地方看到过的?

(2)这些商品的价格你想了解一下吗?注意小数部分的读法,从左往右依次读出各个位上的数。

你能用角或分做单位说出下面物品的价钱吗?

2.旧知铺垫

以“元”为单位,3角用分数表示是几分之几元?你是怎么想的?

(1元是10角,1角是1元的十分之一,3角是1元的十分之三,所以3角就是十分之三元。)

用小数表示就是0.3元。

3.初步认识两位小数。

(1)5分和48分都是以什么为单位的?

如果以“元”为单位,1分用分数表示是几分之几元,用小数表示呢?你是怎么想的?(1元=100分,1分是1元的百分之一,就是1/100元,也就是0.01元。)

(2)5分用分数表示是多少元呢?48分呢?学生讨论

(3)学生汇报,教师根据学生回答完成板书。

(4)5分是( )元,你是怎么想的?(把1元平均分成100份,1分是1元的百分之一,5分就是1元的百分之五。)

百分之五元可以写成小数0.05元。

(5)48分是( )元,你是怎么想的?(把1元平均分成100份,1分是1元的百分之一,48分就是1元的百分之四十八。)

百分之四十八元可以写成小数0.48元。

三、探究新知

1.理解一位小数的意义。1分米用分数表示是几分之几米?3分米用分数表示是几分之几米?你是怎么想的?

2.进一步理解两位小数的意义。

下面,我们请尺子来帮助我们认识小数。

(1)1厘米用分数表示是几分之几米?你是怎么想的?

(2)百分之一米用小数表示是多少?

(3)把4厘米和12厘米改写成以“米”作单位的分数和小数。

(4)观察一下,这二个小数都是把1米平均分成几份?表示其中的1份就是0.01米,表示其中的4份就是多少米?表示其中的12份呢?你是怎么想的?

3.自主探究三位小数的意义。

(1)拿出你的尺子,看一看1毫米有多长,(教师拿出一把米尺),我这里有一把米尺,想一想,1米等于多少毫米?1毫米用分数表示是几分之几米,用小数表示是多少米?你是怎么想的?

(3)0.001米小数点和1之间为什么要多写二个0?(因为1毫米是1米的千分之1,少二个0,就是十分之一了。)

(4)这几个小数跟前面的不太一样,你们能读准吗?学生齐读三位小数。

(5)观察一下,这三个小数都是把1米平均分成几份?表示其中的1份就是0.001米,表示其中的40份就是多少米?表示其中的105份呢?你还能想到什么?

4.

总结归纳小数的意义。

(1)看黑板,哪些是一位小数?哪些是两位小数?哪些是三位小数?

(2)从分数往小数看,什么样的分数可以用小数表示?(分母是10、100、1000……的分数都可以用小数表示。)

从小数往分数看,一位小数可以表示怎样的分数?两位小数?三位小数呢?

谁能连起来说说。

总结:分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,你还能想到什么?能说得完吗?这就是小数的意义。

(3)同桌互相说一说。

四、巩固拓深认知

1.试一试:

学生独立完成,并交流汇报。

(提示:7角3分可以看作多少分,这样改写就比较容易了。)

2.数形结合(练一练)。

请同学们看下面这些图,每个图形都表示整数“1”,第一个图是把什么看做整数“1”?将这个整数“1”平均分成了多少份?第二个图呢?第三个图呢?

学生自己填,再汇报。说说每题你是怎么想的?

观察这些图形,你还能想到哪些分数和小数?

判断这些小数各是几位小数?为什么?(小数部分有几位就是几位小数。)

3.练习四1

我们把整数“1”用一个正方形来表示,你能根据要求涂色,并填出相应的小数吗?

五、课堂小结

这节课你学了什么?

小数的意义教学设计一等奖 篇8

教材以两位小数的意义为主要研究对象,向前联系一位小数与整数,往后发展到三位小数和四位小数,逐渐形成比较完整的小数概念以及记数方法。例1从学生已有的经验切入,先教学两位小数的读法,再感受两位小数的含义,学生体会两位小数的意义不是很轻松的。而小数部分的读法与整数部分不同,又是他们初学时感到不习惯的。从有利于教学出发,例题先讲两位小数的读法,再让学生感受到两位小数的含义。例2通过数形结合,建立小数的概念。

1、通过学习使学生在分数的基础上认识小数,知道什么是小数,小数的意义,学会分数、小数的互化。

2、培养学生的理解空间想象能力。

3、训练学生思维的灵活性。

小数的意义及小数与分数的联系。

多媒体课件

用分数表示下面的数。

1角=()元,1分米=()米。

2角=()元,1厘米=()米。

1分=()元,1毫米=()米。

1、出示例1:用“角”或“分”作单位,说出下面物品的价钱。

指名回答问题。注意学生回答问题时要完整。

橡皮的单价0.3元是3角;信封的单价0.05元是5分;练习簿的单价0.48元是4角8分或48分。

(联系学生的已有经验,既使学生消除对这三个小数的陌生感,又为下面体会小数的意义埋下伏笔。)

2、教学小数的读法:

你能读出下面的小数吗?鼓励学生大胆尝试。

0.05读作:零点零五;0.48读作:零点四八。

引导学生总结读整数部分为0的小数的方法:

从左往右依次读出各位上的数。

3、初步感受两位小数的含义。

想一想:0.3元是1元的几分之几?0.05元是1元的几分之几?0.48元呢?

小组讨论交流。

汇报:0.3元是1元的十分之三。

(学生根据三年级的知识,完全可以回答出第一个问题。)

0.05元是1元的百分之五。提问:为什么:

(根据学生的回答情况,可以作如下的引导。)

思路:1元=100分,1元平均分成100份,1份是1分,1分就是1元的_____;0.05元是5分,是5个,也就是1元的_____。

根据上面的思路,让学生说明0.48元是1元的。

学生回答:1元=100分,1元平均分成100份,1份是1分,1分就是1元的_____;0.48元是48分,是48个,也就是1元的_____。

观察板书:

你发现了什么?

引导学生看到0.05和0.48都是两位小数,都表示百分之几。

4、“试一试”

a、理解:1厘米是米,米可以写成0.01米。

指名理解1厘米为什么是米。

(1米=100厘米,1米平均分成100分,1份就是1厘米,1厘米也就是1米的,就是米。)

b、用米为单位的分数和小数分别表示4厘米与9厘米。

学生回答并说名理由。

c、观察板书:

这三个分数都是什么样的分数?(百分之几的分数)

这三个小数呢?(两位小数)

我们知道一位小数表示十分之几,那两位小数又表示什么呢?(百分之几)

1、出示例2:

把什么看作“1”?(正方形)

看着图形将和写成小数。学生自主填空后回答。

提问:0.1表示什么?0.01又表示什么?

小数的意义教学设计一等奖 篇9

1.知识技能目标:通过本节课的学习,让学生理解小数的产生及其意义,掌握小数的读法与写法。使学生在现实的情境中,初步理解小数的含义,学会读、写小数,体会小数与分数的联系。

2.过程与方法:培养学生观察、分析、交流、合作的意识,帮助学生建立起自我评价与反思的意识。

3.情感态度价值观:使学生在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的信心,激发学生学习数学的兴趣。

1.帮助学生通过自主探索和合作交流,理解小数的意义。这是本课的教学重点灺是本课的教学难点。

1课时。

1.多媒体。

2.课业本。

一、创设情境,激发兴趣,揭示课题。

1.引入:开学前他们去超市买东西,为开学做准备。(cai出示:书包89元,橡皮0.3元,新华字典48元,信封0.05元,水彩笔32元,本子0.46元,文具盒10.9元)

2.走进超市,东西可真多啊!你知道有哪些商品,它们的价格是多少吗?

学生介绍。

可能说出:0.3元3角

0.05元5分

0.46元4角6分

10.9元10元9角

3.你能把这些商品价格分分类吗?并说说你是怎样想的?

学生可能这样分:89元、48元、32元分为一类,因为这些都是整数;0.3元、0.05元、0.46元、10.9元分为一类,这些都是小数。

4.生活中,你在哪里见到过小数?

学生可能回答:超市里商品的价格,文具店里文具的价格,书店里书店价格。教师可以提示些不同的,如:学生的身高:1.3米,视力表1.5,瓶子上1.5升……,同时配合板书。

5.教师小结:原来生活中这么多的小数,今天这节课我们就一起进一步研究小数。

(板书课题:认识小数)

二、引导学生感知小数的含义。

1.小数的读法。

(1)(cai只剩下小数的价格)请生读一读这些小数。

(2)师:这些小数你们都会读了,我写一个你们会读吗?

师写:48.48,请生读。师:

这两个“48”的读法为什么不一样?想一想,小数的读法与整数读法有什么不同?

(3)小结小数的读法:整数部分按读整数的方法读,小数部分从左往右顺次读。

(4)读一读:100.04。

2.认识两位小数表示百分之几。

(1)一位小数与十分之几。

①师:1角是1元的几分之一?是几分之一元?你是怎么想的?

生:1元=10角,0.1元是1角,0.1元=元。

师配合板书:1元=10角0.1元(1角)=元

②师:那么0.3元是几分之几元呢?

生可能回答:0.1元是元,0.3元是元。

师配合板书:0.3元(3角)=元

③师:你说一个一位小数的价格,并请同学说说它是几分之几元?

汇报:男女生对出题,互相做答。

(2)两位小数与百分之几。

①师:0.05元是几分之几元?

生独立思考后汇报,老师配合完成板书:

1元=100分0.01元(1分)=元

0.05元(5分)=元

②师:0.06元是几分之几元?

同桌互说后请一生汇报。

③师:(将0.06改为0.46)0.46元是几分之几元?你会说吗?

师配合回答完成板书:46分=元=0.46元

④师:你出一个两位小数的价格,请同桌说出它是几分之几?

同桌互说后,请一组汇报,并板书记录。

(3)练一练第1题的第(1)小题。

①出题后生独立思考。

②请生汇报。

3.试一试。

(1)(cai出示尺子,并指着1厘米处)

①这是多长?

学生可能回答:1厘米。

②师:如果用“米”作单位,你能说出它的长度吗?

学生汇报,师配合板书:

1米=100厘米1厘米=米=0.01米

(2)师在图中指2个整厘米的长度,请生用“米”作单位说一说?

(3)在书上完成试一试的题目。生汇报,进行核对。

(4)师:对着尺子你能用“米”作单位说出这些整厘米的长度,你能说出一个这尺子没有的整厘米数,并请同桌用“米”作单位说一说吗?

4.读一读黑板上的分数与小数。

三、帮助学生抽象出小数的意义。

1.例2。

(1)(cai出示第1幅图)师:这是一个正方形,我们用整数“1”表示。

(cai出示第2幅图)师:看一看,涂色部分占整体的几分之几?学生回答:涂色部分占整体的。

(cai出示第3幅图)涂色部分占整体的几分之几?学生回答:涂色部分占整体的。

(2)写成小数是(),写成小数是()。

(3)能分别说出空白部分用分数和小数怎样表示吗?

学生汇报。

2.试一试。

(1)(cai出示试一试)生独立审题后完成,同时“比较每组的分数和小数,有什么发现?”

(2)比较上面每组的分数和小数,你能发现什么?

学生可能回答:十分之几的分数可以用一位小数表示,百分这几的分数用两位小数表示。

(4)师:是不是这样呢?看看用这个方法能不能完成看p30练一练第2题。

再请学生说说改写的方法。

(5)出示:写成小数是多少?呢?你能写一写,读一读吗?

为什么在小数点后添“0”?

(6)请学生汇报改写的方法。

(7)板书:分数小数

十分之几一位

百分之几两位

千分之几三位

四、巩固练习。

1.p32练习五1

2.p32练习五2

(1)出示后请生读一读这些小数,后独立完成是课业本上。

(2)说一说,分母各是多少?

3.p32练习五3

(1)完成在课业本上。

(2)说出各是几位小数。

4.p32练习五4

(1)想一想,用几位小数表示。

(2)口答第2行的结果,第1行写在课业本上。

为什么在小数点与“2”点添“0”?

5.p32练习五5

(1)一生读题。

(2)同桌互相说一说。

(3)请一生汇报。

五、总结。

1.今天的课上你学会了什么?

2.在学习中得到哪些经验?

小数的意义教学设计一等奖 篇10

国标苏教版第28~30页例1、例2及相应的“试一试”、“练一练”,练习五第1~5题。

1、在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。

2、在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。

3、初步养成善于观察、善于比较、善于交流等良好的学习习惯。

理解小数的意义。

一、交流信息,引入课题

1、在三年级时,我们认识了一些小数,你能说出几个吗?

2、课前大家已经收集了很多关于小数的资料,老师选择了一些比较有价值的,你可以轻轻地把这些资料读一读,然后挑选你最感兴趣的一条,谈谈你了解到了什么?又想到些什么?

(1)一块橡皮0.6元,一本练习本0.75元。

(2)一张信封0.05元。

(3)王琳的身高1.42米,体重32.5千克。

(4)刘翔在国际田径超级大奖赛中,以12.88秒的成绩刷新世界记录。

(5)一枚1分硬币的厚度大约是0.001米。

(6)人体的正常体温是36.5°c-37.5°c。

(7)“神舟六号”在太空飞行时距地球表面最远的高度大约是344.725千米。

3、引入课题

这些信息中的数都是小数,用小数可以描述一些事情,反映一些现象。看来,同学们对小数已经有了一些认识,想不想作进一步的的研究?你还想知道小数的哪些知识?

根据学生提出的问题揭示课题。

二、探究新知

1、学习小数的读法

小数怎么读?谁能把信息中的几个小数再读一读?

能发现小数是怎么读的吗?

让学生发现:小数点前面的数和我们学过的整数一样读,小数点后面的数只要依次一个一个地读。

出示几个小数,让学生读一读:0.390.1080.0060.80

2、探究小数的意义和写法

(1)如信息中的0.6、0.75、0.05元这些小数是怎么来的?

小组内回忆6角写成0.6元的过程。

那5分为什么可以写成0.05元?同桌商量商量。

引导学生:元与分之间的进率是多少?1分是1元的1/100,是1/100元,可以写成0.01元,那5分是1元的几分之几?是几分之几元?写成小数是多少元?

学生尝试说说7角5分转化为0.75元的过程。

那6角8分可以写成几元?

(2)0.01米是怎么产生的?谁能大胆地猜测一下?(教师出示米尺图)

引导学生说出:1厘米是1米的1/100,是1/100米,写成小数是0.01米。

以小组为单位,在直尺上另外找出两个刻度,想一想,写成分数和小数各是多少?把它们写下来。

组织交流。

(3)猜一猜,把1米平均分成1000份,还会得到什么样的分数?如何写成小数?

把自己的猜想和小组里的同学交流交流,并试着把这些分数、小数写下来。

组织全班交流。

3、抽象概括:仔细观察上面每组的分数和小数,你能发现什么?把你的发现在小组里和同学交流。

引导学生概括:通过刚才的学习,我们知道分母是10、100、1000……的分数,可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

以前我们学习了一位小数,今天又认识了两位小数和三位小数,还会有位数更多的小数吗?

4、教学“试一试”

先让学生独立完成,再组织交流,说说怎么想的。结合图来理解每个小数把整数“1”平均分成了几份,表示这样的几份。

三、练习拓展

1、把听到的小数记录下来。

早晨6点30分,小明从1.2米宽的小床上起来,挤了0.008米长的一段牙膏,用了0.05小时刷牙洗脸,喝了一杯0.243升的牛奶,吃了一只面包,背起2.5千克的书包,飞快地向离家1.46千米的学校跑去。

指名板演。读一读这几个小数,选择整数部分是零的小数说说它们表示几分之几。

2、最近学校附近开了一家文具店,但店里商品的标价不太规范,请你们帮个忙,把这些标价改成用“元”作单位的小数。(图略)

铅笔3角小刀8分直尺5角9分练习本76/100元

3、把你认为长度相同的找出来

4毫米0.004米4/1000米0.04米4厘米4分米4/10米

4、估价:一筒薯片的价格在5元~6元之间。

5、把课前收集的小数信息,挑一

个用今天学到的知识介绍给同桌听。

四、课堂小结

今天,我们进一步认识了小数,你有哪些收获?

在我们的生活、生产中经常用到小数,课后围绕“生活中的小数”写一篇数学日记

我总认为“小数的意义和读写”这一内容用传统的讲授法比较恰当,因为这些概念是约定束成的,而动手实践、自主探究等只能是一种形式上的追求。如何使传统教学与新理念融合在一起,达到比较完美的教学效果,本课进行了一点尝试。

1、以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。课始,展示学生课前收集的小数信息,把小数的意义设置在一种生活化、需求化、个性化的大背景中,让学生用个性化的理解方式来表达对小数的理解。由于小数在生活中的普遍存在,学生已有一定的经验,因此,在教学小数的读法时,充分利用个别学生会读这一资源,让这部分学生大胆释放自己的学习能力和已有经验,通过他们的引读,让其他学生发现小数的读法。

2、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。小数的意义是本课的教学重点,在抽象这个概念的过程中,通过旧知的迁移,尝试让学生自主探究、合作交流,把他们引入研究性学习的氛围,主动建构知识。如回忆了6角为什么能写成0.6元后,让学生在小组里商量商量5分为什么可以写成0.05元?在米尺上找两个整厘米数的刻度,把它们写成分数和小数;猜一猜,如果把1米平均分成1000份,会产生什么样的分数,又如何写成小数?在学生经历了这么多的探究、体验后,引导学生观察每组中的分数和小数,从而发现抽象出分数的意义。

3、在解决实际问题中巩固知识,让学生感受数学的魅力。本课的练习安排,彻底改变了教材上的读读、写写、做做的模式,而是通过把听到的情境中的小数记录下来、改写商品标价、找相同的长度、估价、介绍收集的小数信息等形式,使知识得到巩固和拓展,让学生感受到数学的有趣、真实。

一键复制全文保存为WORD