平行四边形的面积公式教学设计优秀3篇

作为一名专为他人授业解惑的人民教师,时常需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。教案要怎么写呢?下面是小编辛苦为大家带来的平行四边形的面积公式教学设计优秀3篇,希望大家可以喜欢并分享出去。

《→←平行四边形面积的计算》教学设计 篇1

一、说教材

1、教材简析

平行四边形面积的计算,是在学生已掌握了长方形面积的计算、面积概念和面积单位,以及认识了平行四边形的基础上进行教学的。教材运用转化思想,在数方格法的基础叟,用割补法,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。

2、教学目标:

(1)引导学生自己推导出平行四边形的面积公式,沟通长方形和平行四边形之间的内在联系。

(2)通过操作,让学生尝试用转化的思想方法解决新的问题。

(3)理解平行四边形的面积与底和高有关,并会运用面积公式求平行四边形的面积。

3、教学重点:平行四边形的面积计算。

4、教学难点:理解平行四边形面积计算公式的推导过程。

二、教法学法

平行四边形面积的计算是一堂几何初步知识课,为以后学习三角形面积和梯形面积的计算,提供了知识准备。本课的教学设计由直观到抽象,层层深入。从动手操作 观察思考 归纳概括 初步反馈,遵循了概念教学的原则和学生的认知规律。通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。这正体现了概念教学的顺序:动作感知 形成表象 抽象概念。

教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。引导学生自己去操作,自己去观察、比较,自己去探求,重视让学生自己去操作,自己去获取知识,以思维训练为主线,提高学生的思维水平。互助合作,以全体学生为教育对象,整体提高,营造良好的学习氛围。

三、教学过程

(一)复习铺垫

教具逐个出示:

1、图(1)是什么图形? 它的面积怎样算?现在量得长是7厘米,宽是4厘米,你知道这个长方形的面积是多少?

2、长方形的面积可以直接用公式计算,那么图(2)我们能直接用公式计算它的面积吗?用什么办法求它的面积?

学生独立思考,讨论后反馈。(教具演示把多的一块剪下来,拼过去正好是一个长方形,再用长乘以宽就是它的面积)

3、刚才我们用割下来补过去的方法将图(2)转化成和原来图形面积相等的长方形,再用长方形面积公式求出它的面积。现在谁能计算图(3)的面积?

学生独立计算后,反馈。你是怎么算的?为什么?(教具演示:把图(3)右边的三角形割下来补到左边,转化成一个长方形。)

(二)导入新课

图(2)、图(3)我们用割补的方法把它们转化成学过的长方形就能算出它们的面积。(教具出示下图)

你能想办法求出这个平行四边形的面积吗?下面我们一起来研究平行四边形的面积计算。出示课题。

(三)引导探究

1、学生独立思考,动手操作,尝试计算平行四边形的面积。

(教师巡视,学生计算1号学具纸片平行四边形的面积)

谁能说一说,这个平行四边形的面积是多少?你是怎样计算的?学生可能出现不同的答案。

到底怎样思考才是正确的呢?充分运用你手头的学具和有关工具(尺、剪刀等)来尝试操作,然后列式计算(四人小组进行合作、交流)

反馈交流:根据学生的回答教具演示“转化过程”。

演示前先比较两个全等的平行四边形,再将其中一个平行四边形沿着平行四边形的高把图形剪开,将左边的三角形(或直角梯形)拼到右边去,正好是个长方形,量出它的长是7厘米,宽是4厘米,面积是7×4=28平方厘米。

追问:为什么可以这样算?

把平行四边形割补成长方形,图形的什么变了,什么没有变?

比较拼成的长方形的长、宽与原平行四边形的底、高之间的关系。

2、操作实践,验证想法。

是不是所有的平行四边形都能转化成长方形?任意画一个平行四边形或任意取一个学具平行四边形纸片,证明你的想法。(结论:由此看来,对于任何一个平行四边形,要计算它的面积,我们都可以用割补的访求将平行四边形转化成长方形来计算它的面积)

3、观察分析,归纳公式。

那么平行四边形的面积该怎样计算呢?为什么?(学生讨论)

结合回答,教具演示:因为割补的方法把平行四边形转化成长方形,形变面积不变,我们发现,长方形的长相当于平行四边形的底,宽相当于平行四边形的高,所以平行四边形的面积是底乘以高。

板书:长方形的面积=长×宽

平行四边形的面积=底×高

如果用字母s表示平行四边形的面积,a表示它的底,h表示它的高,那么平等四边形面积的字母公式是怎样的?

(四)小结

1、面对“平行四边形的面积”这个新问题,我们利用已有的“求长方形的面积知识”,通过转化的方法,推导出平行四边形的面积公式。

2、现在,你们说说,要求平行四边形的面积,关键是找哪两个条件?

(五)练习

1、计算下面平行四边形的面积。(练后讲评)

2、计算下面平行四边形的面积。

3、有一块平行四边形草地,底18米,高10米。这块草地的面积是多少?

4、口答下面每个平行四边形的面积。

底(厘米) 50 12 100 9

高(厘米) 40 8 36 4

面积(平方厘米)

(六)课堂小结

1、这节课,我们学到了什么?有什么体会?

2、同学们的表现好在哪里?

*3机动练习:

计算下面图中平行四边形的面积,正确列式为(    )。(单位:厘米)

《平行四边形面积的计算》教学设计 篇2

一、 说教材

1、 教材分析

本节课的知识点是平行四边形面积的计算,学生对于平面图形中边与边不成直角的情况的面积的计算是第一次遇到。学生要用"转化"的思想解决平行四边形面积的计算问题,而后面学习三角形,梯形等平面几何图形的面积推导都需要用到"转化"的思想所以这节课的学习犹为重要。

2、 学情分析

教是为学生的学服务的,只有了解学生的学情,服务才能到位,才能更好的突出学生的住体地位,五年级的学生不论是学习习惯还是思维水平都有了一定的基础。从学生的心理特点来看这部分的内容也是符合学生的认知水平的。

3、 教学目标

(1) 知识技能:探索平行四边形面积计算公式的形成过程,并能运用公式解决生活中的数学问题。

(2)过程于方法:在动手操作合作交流的过程中体验平行四边形面积公式的推导过程,感受探索、研究的乐趣。

(3)情感与态度:培养学生团结协作,运用数学解决实际问题的能力。

4、 重点、难点:探究平行四边形面积计算公式。

关键:运用转化的方法探究平行四边形面积的计算。

二、 说教法、学法

(1)改变过去教师讲学生听满堂灌、老师问学生答满堂问的教学模式,力求通过平等的师生对话培养学生的创新精神和实践能力。

(2)利用多媒体课件辅助教学提高课堂教学效率,让学生经历从具体事物抽象成数学模型,再从数学知识还原到现实世界的过程。获得由浅入深的数学学习经历。

(3)引导学生进行反思,让学生畅谈什么地方表现的最好,什么地方自己进步了,使每个孩子都觉得自己使成功者。

(4)通过合作学习,让每个学生再小组活动中都有事要做、有事可做,并做到有分工有合作,处理好小组合作与独立思考的关系。

(5)不断丰富学生的学习方式,通过复习发现问题,通过思考提出问题,通过交流分析问题,通过合作得出结论,作出调整。再通过反思提出问题……在循环中增强了学生的问题意识。

三、 说教学程序

(一) 创设情境,渗透学法

现实的富有挑战性得情境最能够激发学生的兴趣,调动学生积极的学习情感,引法学生得学习兴趣。在课的开始创设一个这样的一个情境:在美丽的操场上有很多不同形状的花坛,(长方形、正方形、平形四边形)问你想知道计算它们的面积是多少吗?学生有的想知道长方形花坛的面积,有的想知道正方形花坛的面积,有的想知道平形四边形花坛的面积,平行四边形的面积怎么算就成了学生学习的需求。紧接又出示一些不规则图形的花坛上面画着方格,又问:这些不规则的花坛的平面图形的面积你会求吗?你能很快的说出他们的面积是多少吗?为了很快的寻求答案,学生很自然的想到了割补转化的方法。这样就为后面探究平行四边形面积的计算做了铺垫。

(二) 小组合作,探究面积

数学课程标准提出:有效的数学学习不能单纯的依靠模仿和记忆,动手操作、自主探索、合作交流是学习数学的有效方式,平行四边形的面积的计算怎样探究,从哪里开始探究学生有一定的困难。这个环节的设计可以采用小组合作探索平行四边形的面积。当学生提出设想:我们能不能把平行四边形转化成学过的图形求出它的面积时,我就让他们尝试:动手试试看能不能转化成以学过的平面图形。1、老师要求同学们先独立思考,然后闭上眼睛想象一下转化后的图形的样子,再开始小组合作。2、引导小组合作,并让小组长做好分工。3、学生展示小组合作的成果,学生们可能会有很多种转化的方法,但要让学生把每一种转化的过程展示出来。4、组织小组讨论:观察转化后的图形与原来的平行四边形之间有什么关系?学生说的面可能会很广,要把他们引导到面积、长、底、宽、高之间的关系。在这个过程中学生可以在小组内发表自己的见解,倾听同学的想法,不断调整自己的方案,经历平行四边形面积计算公式的推导过程。这样才能学会合作交流,提高他们的数学素养。

(三)联系生活、灵活运用

学生数学学习的目的在于运用,通过练习使学生加深对书本数学与生活数学的区别,密切数学与生活的联系,也为了更好的培养学生运用数学解决简单的实际问题的能力。在这个环节中设计可设计:

1、解决课前第一个情境中的求平形四边形花坛面积的问题。操场上要设计更多的不同形状的花坛,(有学过的平面图形,有没有学过的平面图形)让学生任选其中的两个算出它的面积。

2、出示一块近似平行四边形的菜地,让学生求出它的面积,学生首先必须把它想象成平行四边形,让后提出要量出它的底和高,这时我就提供给他们两组数据(底和高不对应)以引起学生的争议,让他们发表自己不同的见解,最后形成共识:要求平行四边形的面积必须要有相对应的底和高相乘。

3、设计同底等高的多个平行四边形让学生判断它们的面积是否相等。通过猜测、讨论、交流、验证得出同底等高得平行四边形不管它得形状是什么样的,它们的面积总是相等的。

(四)反思交流、拓展延伸

学生只有学会不断的反思,才能够不断的进步,在课末组织学生畅谈在这节课中你觉得什么地方表现的最好,什么地方还有待于提高,什么人最值得你学习最后引导学生运用转化的方法回去后尝试着去探究三角形或梯形面积计算公式的推导。

总之,本节课努力为学生创设民主、和谐、宽松、愉悦的学习氛围,使教学过程成为一个不断创设问题情境,和探索解决问题的过程,努力为学生提供充分的活动条件和活动空间,使学生的数学学习成为一个不断感受、体验、探索、交流和应用数学的过程。始终把学生看作学习的主人,达到培养和提高学生数学素养的目的。

《平行四边形面积的计算》教学设计 篇3

平行四边形面积的计算,是在学生已掌握了长方形面积的计算、面积概念和面积单位,以及认识了平行四边形的基础上进行教学的。教材运用转化思想,在数方格法的基础叟,用割补法,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。

2、教学目标:

(1)引导学生自己推导出平行四边形的面积公式,沟通长方形和平行四边形之间的内在联系。

(2)通过操作,让学生尝试用转化的思想方法解决新的问题。

(3)理解平行四边形的面积与底和高有关,并会运用面积公式求平行四边形的面积。

3、教学重点:平行四边形的面积计算。

4、教学难点:理解平行四边形面积计算公式的推导过程。

二、教法学法

平行四边形面积的计算是一堂几何初步知识课,为以后学习三角形面积和梯形面积的计算,提供了知识准备。本课的教学设计由直观到抽象,层层深入。从动手操作 观察思考 归纳概括 初步反馈,遵循了概念教学的原则和学生的认知规律。通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。这正体现了概念教学的顺序:动作感知 形成表象 抽象概念。

教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。引导学生自己去操作,自己去观察、比较,自己去探求,重视让学生自己去操作,自己去获取知识,以思维训练为主线,提高学生的思维水平。互助合作,以全体学生为教育对象,整体提高,营造良好的学习氛围。

三、教学过程

(一)复习铺垫

教具逐个出示:

1、图(1)是什么图形? 它的面积怎样算?现在量得长是7厘米,宽是4厘米,你知道这个长方形的面积是多少?

2、长方形的面积可以直接用公式计算,那么图(2)我们能直接用公式计算它的面积吗?用什么办法求它的面积?

学生独立思考,讨论后反馈。(教具演示把多的一块剪下来,拼过去正好是一个长方形,再用长乘以宽就是它的面积)

3、刚才我们用割下来补过去的方法将图(2)转化成和原来图形面积相等的长方形,再用长方形面积公式求出它的面积。现在谁能计算图(3)的面积?

学生独立计算后,反馈。你是怎么算的?为什么?(教具演示:把图(3)右边的三角形割下来补到左边,转化成一个长方形。)

(二)导入新课

图(2)、图(3)我们用割补的方法把它们转化成学过的长方形就能算出它们的面积。(教具出示下图)

你能想办法求出这个平行四边形的面积吗?下面我们一起来研究平行四边形的面积计算。出示课题。

(三)引导探究

1、学生独立思考,动手操作,尝试计算平行四边形的面积。

(教师巡视,学生计算1号学具纸片平行四边形的面积)

谁能说一说,这个平行四边形的面积是多少?你是怎样计算的?学生可能出现不同的答案。

到底怎样思考才是正确的呢?充分运用你手头的学具和有关工具(尺、剪刀等)来尝试操作,然后列式计算(四人小组进行合作、交流)

反馈交流:根据学生的回答教具演示“转化过程”。

一键复制全文保存为WORD