《三角形的内角和》教学设计【精选3篇】

作为一无名无私奉献的教育工作者,常常要根据教学需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。怎样写教案才更能起到其作用呢?为大家精心整理了《三角形的内角和》教学设计【精选3篇】,希望能够给予您一些参考与帮助。

四年级数学三角形内角和教案 篇1

探索与发现:三角形内角和

课型

新授课

设计说明

本节课是在学生已经掌握了钝角、锐角、直角、平角及三角形分类的基础上,让学生通过直观操作来认识和学习的。

1.重视知识的探究与发现。

在教学中,概念的形成没有直接给出,而是整节课都是在引导学生的实验操作、活动探究中进行。在探究活动中,不但重视知识的形成过程,而且注意留给学生充分进行主动探究和交流的空间,让学生归纳出三角形内角和等于180°。

2.重视学生的合作探究学习。

使学生能够积极主动地参与到数学活动中,能在实践中感知、发表自己的见解,学生感受到通过自己的努力取得成功所带来的满足感,同时也培养了学生的探究能力和创新能力。

课前准备

教师准备:PPT课件 量角器 直尺 三角尺

学生准备:量角器 三角尺

教学过程

一、常识导入。(3分钟)

1、介绍帕斯卡:早在300多年前有一个科学家,他在12岁时验证了任意三角形的内角和都是180°,他就是法国科学家、物理学家帕斯卡。

2.导入新课:这节课我们也来验证一下三角形的内角和。

1、倾听教师的介绍,了解帕斯卡。

2.明确本节课的学习内容。

1、填空。

(1)有一个角是钝角的三角形是( )三角形;有一个角是直角的三角形是( )三角形;三个角都是锐角的三角形是( )三角形。

(2)平角=( )°

直角=( )°

周角=( )°

二、合作交流,探究新知。(18分钟)

(一)量算法。

1.探究特殊三角形的内角和。

(1)出示一副三角尺,引导学生说一说各个角的度数。

(2)引导学生算一算它们的内角和各是多少度。

(3)引导学生得出结论。

2.探究一般三角形的内角和。

(1)引导学生猜一猜其他三角形的内角和是多少度。

(2)组织学生验证一般三角形的内角和是180°。

①引导学生量出每个内角的度数,再计算三个内角的和。

②引导学生分工合作,把结果填入记录表中。

③引导学生说说自己的发现。

(3)引导学生明确由于测量有误差,实际上三角形的内角和是180°。

(二)剪拼法。

1.组织学生用剪拼的方法求三角形的内角和。

2.引导学生总结发现。

3.课件演示,得出三角形的内角和是180°的结论。

(三)折拼法。

1、引导学生结合剪拼法尝试折拼法。

2、引导学生得出结论。

3、课件演示折拼法。

(一)1.(1)说出每个三角尺中各个角的度数。

①90°;60°;30°。

②90°;45°;45°。

(2)独立算出每个三角尺的内角和。

(3)得出结论:这两个三角尺的内角和都是180°。

2.(1)同桌之间互相说说自己的看法。

猜测:一种是内角和可能是180°,另一种是内角和一定是180°。

(2)小组合作进行探究,量一量,算一算,说一说。

三角形种类

四年级数学三角形内角和教案 篇2

教学内容:

p.28、29

教材简析:

本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发三角形内角和是180度的猜想,再通过组织操作活动验证猜想,得出结论。

教学目标:

1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。

2、让学生学会根据三角形的内角和是180 这一知识求三角形中一个未知角的度数。

3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。

教学准备:

三角板,量角器、点子图、自制的三种三角形纸片等。

教学过程:

一、提出猜想

老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90+60+30=180,90+45+45=180

看了这2个算式你有什么猜想?

(三角形的三个角加起来等于180度)

二、验证猜想

1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。

老师注意巡视和指导。交流各自加得的结果,说说你的发现。

2、折、拼:学生用自己事先剪好的图形,折一折。

指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。

继续用该方法折钝角三角形,得到同样的结果。

直角三角形的折法有不同吗?

通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。

3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。

在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角180度。

小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。

4、试一试

三角形中,角1=75,角2=39,角3=( )

算一算,量一量,结果相同吗?

三、完成想想做做

1、算出下面每个三角形中未知角的度数。

在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。

指出:在计算的时候,我们可根据具体的数据选择更佳的算法。

2、一块三角尺的内角和是180 ,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360 呢?为什么?

然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 。

3、用一张正方形纸折一折,填一填。

4、说理:一个直角三角形中最多有几个直角?为什么?

一个钝角三角形中最多有几个直角?为什么?

四、布置作业

第4、5题

《三角形的内角和〉教学设计 篇3

课题

三角形的内角和

手记

教学目标

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

重点难点

重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。

难点:探索、验证三角形内角和是180°的过程。

过程

资源

体验目标

“学”与“教”

创设问题情境

课件出示:两个三角板

遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。

这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?

生: 45°、90°、45°。

生: 30°、90°、60°。

师:仔细观察,算一算这两个三角形的内角和是多少度?

生:90°+45°+45°=180°。

生:90°+60°+30°=180°。

师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?

生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。

师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。

构建

模型

每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)

课件

学生自己剪的一个任意三角形

大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。

让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。

这一系列活动同时还潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。

师:之前老师为每个同学准备了①-⑥六个三角形,下面请组长分发给每个三角形,拿到手后,先别着急,先想一想你准备用什么方法去验证三角形内角和?

学生动手操作验证

师:汇报时,请先说一说是几号三角形?然后说一说这个三角* *形是什么三角形?

学生汇报:

生1:③号三角形是直角三角形,内角和是180°。

生2:②号三角形是锐角三角形,内角和是180°。

生3:⑤号三角形是钝角三角形,内角和是180°。

生4:④号三角形是直角三角形,内角和是180°。

生5:①号三角形是钝角三角形,内角和是180°。

生6:⑥号三角形是锐角三角形,内角和是180°。

师:除了量的方法外,还有其他方法验证三角形内角和吗?

生1:分别剪下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。

生2:分别撕下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。

生3:把三角形的三个角折成平角,平角是180°,所以推理得出三角形内角和是180°。

这些方法都验证了:三角形的内角和是180°。

师:观察这些三角形的内角和是多少度?这些三角形的内角和都是180°,这是不是老师故意安排好的呢?

师:有没有人质疑,用什么方法验证?

生用自己剪的任意三角形再次验证三角形内角和是否180°。

生:得出内角和还是180°。

师:不管是老师提供的三角形,还是你们自己准备的三角形,通过我们的算一算、拼一拼、折一折,都得出了三角形的内角和是180°。

师:我们已经学习了三角形的分类,三角形可以分成锐角三角形、直角三角形、钝角三角形。这些三角形的内角和是180°,我们能把它们概括成一句话吗?

生:三角形的内角和是180°。

师:看来我们的猜想是正确的。

师:早在2000多年前著名数学家欧几里得就已经得到这个结论,到了初中以后同学们还会用更加严密的方法证明三角形的内角和是180°。

解释

运用拓展

课件

正方形纸

让学生更深的对所学的新知加以巩固,从而促使学生综合运用知识,解决问题的能力。同时在练习中发展学生的观察、归纳、概括能力和初步的空间想象力。

1、∠1=40°,∠2=48°,求∠3有多少度?

2、算出下面三角形∠3的度数。

⑴∠1=42°,∠2=38°,∠3=?

⑵∠1=28°,∠2=62°,∠3=?

⑶∠1=80°,∠2=56°,∠3=?

师:你是怎样算的?这三个三角形各是什么三角形?

提问:在一个三角形中最多有几个钝角?

在一个三角形中最多有几个直角?

3、游戏:将准备的正方形纸对折成一个三角形?

师:这个三角形的内角和是多少度?再对折一次,现在内角和是多少度?如果继续折下去,越折越小,三角形的内角和会是多少度?

说明:三角形大小变了,内角和不变。

4、有两个完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

说明:三角形形状变了,内角和不变。

5、根据所学知识,你能想办法求出下面图形的内角和吗?

板书

设计

三角形内角和

①号 钝角三角形 内角和180°

②号 锐角三角形 内角和180°

三角形内角和是180°

③号 直角三角形 内角和180°

④号 直角三角形 内角和180°

⑤号 钝角三角形 内角和180°

⑥号 锐角三角形 内角和180°

学具教具准备

课件三角形纸片量角器正方形纸

一键复制全文保存为WORD