《圆的面积》教学设计优秀10篇

作为一位优秀的人民教师,时常需要编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。一份好的教学设计是什么样子的呢?下面是小编辛苦为大家带来的《圆的面积》教学设计优秀10篇,如果对您有一些参考与帮助,请分享给最好的朋友。

圆的面积教案 篇1

学材分析

教学重点:

面积计算公式的正确运用。

教学难点:

面积公式的推导过程。

学情分析

学生对圆面积公式的推导过程理解有一定的难度。

学习目标

1、理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

2、会用圆面积的计算公式,正确计算圆的面积。

导学策略

导练法、迁移法、例证法

教学准备

圆的面积模型、圆规、投影仪、投影片

教师活动

学生活动

一.引入

1、什么叫做圆面积?

2、出示大小略有不同的两个圆,让学生比较哪个圆的面积大?大多少?(学生口答后把两圆重叠,比较大小。)相差多少呢?

3、引出课题。

二.推导

1、问:小正方形面积怎样计算?(半径半径)圆面积与小正方形面积的3倍谁大谁小?圆面积与小正方形面积的4倍呢?2倍呢?

2、师生共同操作:拿出一张正方形纸,按要求对折4次(注意第4次折的折法,是按角对分地折),然后拿尺量出一等腰三角形剪一刀,展开,得到一个近似于圆的纸片。

3、教师操作:拿一张正方形纸,对折5次,剪一刀展开。与前一次剪的作比较,使学生知道,随着折的次数不断增加,剪下的图形也就越接近圆。

4、分析推导。师生共同拿出剪好的图形分析:这个图形等分成若干块,每一块都是什么形状?(等腰三角形)这个图形的面积怎么求?随着折的次数不断增加,剪下的图形的面积也就越接近什么图形的面积?

板书:图形面积=等腰三角形面积n=底高2n=Cr2n

=2rn

圆的面积=r2

边板书边提问:等腰三角形的底是多少?(C)等腰三角形的高相当于圆的什么?(半径r)

5、在上面推导的基础上,让学生分4人小组动手把准备的圆分成相等的16个小扇形,再拼成其他图形,推导出圆面积公式。教师巡视,取学生拼成的各式各样的图形,贴在黑板上,选其中两个进行分析。

三.巩固

试一试。

四.总结

五.作业

学生口答

师生共同操作

师生共同操作

教学反思

已经是第2次教毕业班了记得第1次教的时候,还是幼儿园的院长一早每天都要过去一下,课前准备就不够充分,上课就照本宣科。而现在教这个知识的时候,不仅教具演示而且学生实际操作,所以教学效果就好多了,可以说连中下生都能灵活应用这个知识。

《圆的面积》教学设计 篇2

【教学内容】

16页—18页圆的面积

【教学目标】

知识与技能:

(1)、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

(2)、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

过程与方法:

通过割补、拼组的方法探究圆面积的计算方法。

情感、态度与价值观:

在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

【教学重点】经历圆面积计算公式的推导过程,掌握圆面积计算公式。

【教学难点】理解圆面积计算公式的推导过程,能运用圆面积的知识解决一些简单实际的问题。

【教具准备】PPT课件,圆公式推导演示器。

【学具准备】等分好的圆形纸片。

【教学时间】一课时。

【教学过程】

一、基本训练。

1、复习圆的有关知识。

2、复习圆周长的计算公式。

二、问题情境。

课件演示:在草地的一个木桩上拴着一只羊,想一想这只羊能吃到草的最大范围在哪里?

学生观察并讨论,然后指名回答。

预设1:我能发现羊能吃到草一周所走过的地方刚好是一个圆形。

预设2:这个圆形的半径就是绳子的距离,也就是5米。

预设3:这个圆形的中心就是木桩所在的地方。

师:同学们说得很好。请大家说说这个圆形的面积指的是哪部分呢?

羊能吃到草的最大范围就是这个圆形的面积。

师:说得很好,今天这节课我们就来学习如何羊能吃到草的最大范围的面积有多大,也就是怎样求圆的面积呢?(板书:圆的面积)

三、建立模型。

1、认识圆的面积

师出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?

出示结语:圆所占平面的大小叫做圆的面积

[设计意图:通过多媒体演示圆的面积让学生在充分直观感知圆面积的基础上,概括出圆面积的意义。]

2、估算圆的面积

(1)、投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

(2)、指明反馈估算结果,并说明估算方法及依据。

①、我是根据圆里面的正方形来估计的,外面方格图面积为10×10=100平方米,圆里面的正方形面积大约为50平方米,那么这个圆形的面积大约在50——100平方米之间;

②、我是用数方格的方法来估计的。我把这个圆形平均分成4份,其中一份大约为20平方米,那么这个圆形的面积约有80平方米;

师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

[设计意图:巧设估算圆的面积这个环节,使学生对圆面积与r的倍数关系,获得十分鲜明的表象,让学生带着悬念去探索推导公式,与后面得出圆面积计算公式后的验证前后呼应,加深学生对圆面积的计算公式的理解和记忆。]

3、积极动脑,讨论推导方法。

回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的?——引导转化

[设计意图:创设问题情境,启发学生回忆平行四边形、三角形和梯形面积计算公式的推导过程。激起学生用旧知探索新知的兴趣,并明确用转化的数学思想方法。]

4、小组合作,推导公式

师:那圆可转化为哪一个学过的图形呢?小组可以剪一剪、拼一拼,试试看!哪怕是近似的图形也可以。小组讨论,设计方案。展示在投影仪上并汇报。

(1)、操作感知。

操作活动一:

让学生以小组为单位将严格圆形纸片分成8等份,将每份剪下后再进行拼接。(图见课件)

问题:拼成后像什么图像?

②、操作活动二:

让学生以小组为单位将严格圆形纸片分成16等份、32等份。将每份剪下后再进行拼接。(图见课件)

(2)、讨论、交流。

通过剪拼,你发现了什么?(把圆等分的份数越多,拼成的图形越接近平行四边形或长方形。)

(3)、推导圆的面积计算公式。

学生讨论并回答:(课件演示推导过程)

5、应用圆的面积公式解决问题。(解决情景图中的问题)

[设计意图:通过小组合作、探究学习等不同形式,来调动学生的多种感官参与学习,发挥学生的主体作用,培养学生主动探究、互助合作的精神,使学生明确圆可以拼成的近似的长方形,渗透化曲为直的方法。]

四、解释应用。

1、口答:(出示课件:)

2、计算下面圆的面积。(出示课件)

3、列式计算。

(1)半径2米的圆的面积是多少平方米?

(2)直径2米的圆的面积是多少平方米?

[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

五、回顾小结。

本节课,你学会了什么?你是用什么方法探索圆的面积的计算公式的?怎样求圆的面积?

作业布置和板书设计(略)

小学数学《圆的面积》教学设计 篇3

【教学内容】

16页—18页圆的面积

【教学目标】

知识与技能:

(1)了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

(2)能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

过程与方法:

通过割补、拼组的方法探究圆面积的计算方法。

情感、态度与价值观:

在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

【教学重点】

经历圆面积计算公式的推导过程,掌握圆面积计算公式。

【教学难点】

理解圆面积计算公式的推导过程,能运用圆面积的知识解决一些简单实际的问题。

【教具准备】

PPT课件,圆公式推导演示器。

【学具准备】

等分好的圆形纸片。

【教学时间】

一课时。

【教学过程】

一、基本训练。

1、复习圆的有关知识。

2、复习圆周长的计算公式。

二、问题情境。

课件演示:在草地的一个木桩上拴着一只羊,想一想这只羊能吃到草的最大范围在哪里?

学生观察并讨论,然后指名回答。

预设1:我能发现羊能吃到草一周所走过的地方刚好是一个圆形。

预设2:这个圆形的半径就是绳子的距离,也就是5米。

预设3:这个圆形的中心就是木桩所在的地方。

师:同学们说得很好。请大家说说这个圆形的面积指的是哪部分呢?

羊能吃到草的最大范围就是这个圆形的面积。

师:说得很好,今天这节课我们就来学习如何羊能吃到草的最大范围的面积有多大,也就是怎样求圆的面积呢?(板书:圆的面积)

三、建立模型。

1、认识圆的面积

师出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?

出示结语:圆所占平面的大小叫做圆的面积

【设计意图:通过多媒体演示圆的面积让学生在充分直观感知圆面积的基础上,概括出圆面积的意义。】

2、估算圆的面积

(1)投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

(2)指明反馈估算结果,并说明估算方法及依据。

①、我是根据圆里面的正方形来估计的,外面方格图面积为10×10=100平方米,圆里面的正方形面积大约为50平方米,那么这个圆形的面积大约在50——100平方米之间;

②、我是用数方格的方法来估计的。我把这个圆形平均分成4份,其中一份大约为20平方米,那么这个圆形的面积约有80平方米;

师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

【设计意图:巧设估算圆的面积这个环节 ,使学生对圆面积与r的倍数关系,获得十分鲜明的表象, 让学生带着悬念去探索推导公式,与后面得出圆面积计算公式后的验证前后呼应,加深学生对圆面积的计算公式的理解和记忆。】

3、积极动脑,讨论推导方法。

回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的? ——引导转化

【设计意图:创设问题情境,启发学生回忆平行四边形、三角形和梯形面积计算公式的推导过程。激起学生用旧知探索新知的兴趣,并明确用转化的数学思想方法。】

4、小组合作,推导公式

师:那圆可转化为哪一个学过的图形呢?小组可以剪一剪、拼一拼,试试看!哪怕是近似的图形也可以。小组讨论,设计方案。展示在投影仪上并汇报。

(1)操作感知。

操作活动一:

让学生以小组为单位将严格圆形纸片分成8等份,将每份剪下后再进行拼接。(图见课件)

问题:拼成后像什么图像?

②、操作活动二:

让学生以小组为单位将严格圆形纸片分成16等份、32等份。将每份剪下后再进行拼接。(图见课件)

(2)讨论、交流。

通过剪拼,你发现了什么?(把圆等分的份数越多,拼成的图形越接近平行四边形或长方形。)

(3)推导圆的面积计算公式。

学生讨论并回答:(课件演示推导过程)

5、应用圆的面积公式解决问题。(解决情景图中的问题)

【设计意图:通过小组合作、探究学习等不同形式,来调动学生的多种感官参与学习,发挥学生的主体作用,培养学生主动探究、互助合作的精神,使学生明确圆可以拼成的近似的长方形,渗透化曲为直的方法。】

四、解释应用。

1、口答:

2、计算下面圆的面积。(出示课件)

3、列式计算。

(1)半径2米的圆的面积是多少平方米?

(2)直径2米的圆的面积是多少平方米?

【设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。】

五、回顾小结。

本节课,你学会了什么?你是用什么方法探索圆的面积的计算公式的?怎样求圆的面积?

小学数学《圆的面积》教学设计 篇4

教学内容

义务教育课程标准实验教科书第十一册P69~71例1、例2。

教学目标

1、认知目标

使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。

2、过程与方法目标

经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法

3、情感目标

引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

教学重点】:

掌握圆的面积的计算公式,能够正确地计算圆的面积。

教学难点】:

理解圆的面积计算公式的推导。

教学准备】:

相应课件;圆的面积演示教具

教学过程

一、情境导入

出示场景——《马儿的困惑》

师:同学们,你们知道马儿吃草的大小是一个什么图形呀?

生:是一个圆形。

师:那么,要想知道马儿吃草的大小,就是求圆形的什么呢?

生:圆的面积。

师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)

【设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。】

二、探究合作,推导圆面积公式

1、渗透“转化”的数学思想和方法。

师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?

我们先来回忆一下平行四边形的面积是怎样推导出来?

生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。

生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?

生:这样就把一个不懂的问题转化成我们可以解决的问题。

师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。

师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)

2、演示揭疑。

师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。

师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。

师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)

【设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。】

3、学生合作探究,推导公式。

(1)讨论探究,出示提示语

师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:

①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?

②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?

③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。

师:你们明白要求了吗?(明白)好,开始吧。

学生汇报结果,师随机板书。

同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。

(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?

(3)揭示字母公式。

师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2

(4)齐读公式,强调r2=r×r(表示两个r相乘)。

从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?

【设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。】

三、运用公式,解决问题

1、教学例1。

师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)知道圆的半径,让学生根据圆的面积计算公式计算圆的面积。

预设:

教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

2、如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

3、求下面各圆的面积。

【设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。】

4、教学例2。

师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

师:找到解决问题的方法了吗?

师:好的,就按同学们想到的方法算一算这个圆环的面积吧!

教师继续对学困生加强巡视,如果还有问题的学生并给予指导。

【设计意图:学生已经掌握了圆面积的计算公式,掌握环形面积计算,教师可以引导学生分析理解,大胆放手让学生尝试解答,培养了学生运用所学知识解决实际问题的能力。】

四、课堂作业。

1、教材P69页“做一做”第2小题。

2、判断题

让学生先判断,并讲一讲错误的原因。

3、填空题

复习圆的半径、直径、周长、面积之间的相互关系。

4、教材P70页练习十六第2小题。

5、完成课件练习(知道圆的周长求面积)

老师强调学生认真审题,并引导学生要求圆的面积必须知道哪一个条件(半径),知道圆的周长就如何求出圆的面积,老师注意辅导中下学生。

五、课堂总结

师:同学们,通过这节课的学习,你有什么收获?

六、布置作业

《圆的面积》教学设计 篇5

教学内容分析:

圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。

学生情况分析:

小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,六年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以教学时应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。

【教学目标】:

1.认知目标

使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。

2.过程与方法目标

经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

3.情感目标

引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

【教学重点】:掌握圆的面积的计算公式,能够正确地计算圆的面积。

【教学难点】:理解圆的面积计算公式的推导。

【教学准备】:相应;圆的面积演示教具

【教学过程】

一、情境导入

出示场景——《马儿的困惑》

师:同学们,你们知道马儿吃草的范围是一个什么图形吗?

生:是一个圆形。

师:那么,要想知道马儿吃草范围的大小,就是求圆形的什么呢?

生:圆的面积。

师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)

[设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]

二、探究合作,推导圆面积公式

1.渗透“转化”的数学思想和方法。

师:关于圆的面积你想了解什么?

(什么是圆的面积?圆的面积怎样计算呢?计算公式又是什么?计算公式怎样推导?……)

我们先来回忆一下平行四边形的面积是怎样推导出来?

生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。

生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?

生:这样就把一个不懂的问题转化成我们可以解决的问题。

师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。

师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)

2.演示揭疑。

师:(边说明边演示)把这个圆平均分成4、8、16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。

师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师演示)。

师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)

[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑的演示,生动形象地展示了化曲为直的剪拼过程。]

3.学生合作探究,推导公式。

(1)讨论探究,出示提示语。

师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:

①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?

②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?

③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。

师:你们明白要求了吗?(明白)好,开始吧。

学生汇报结果,师随机板书。

同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。

(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?

(3)揭示字母公式。

师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2

(4)齐读公式,强调r2=r×r(表示两个r相乘)。

从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?

[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]

三、运用公式,解决问题

1.同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?

(再次出示牛吃草图)

师:这匹马最多能吃多大面积的草,现在会求了吗?

教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

2.教学例1。

如果我们知道一个圆形草坪的直径是20,每平方米草皮8元,铺满草坪需要多少钱?

要求铺满草坪需要多少钱,要先求什么呢?(先要求出圆形草坪的面积是多少平方米。)

我们该怎样求它的面积呢?请大家动笔算一算这个圆形草坪的面积吧!

师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。

(出示第三题)

3.小刚量得一棵树干的周长是1256c。这棵树干的横截面的面积是多少?

分析题意后学生独立完成(组织交流,评价反馈)

同学们真棒,解决完上面的三个问题后敢不敢来挑战下面的问题?

4.已知半圆中三角形ABC的高是5厘米,面积是30平方厘米,半圆的直径是多少?求阴影部分面积。

[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

四、全课小结、回顾反思

师:你们对于圆面积的疑问现在解开了吗?通过这节课的学习,你有什么收获?

知道哪些条件就可求圆的面积?

(知道半径、直径或是周长)

知道半径:S=πr2

知道直径:S=π(d÷2)2

知道周长:S=π(C÷π÷2)2

师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!

【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】

五、课后延伸

圆除了转化为长方形,还能转化为什么图形呢?

板书设计:

长方形的面积=长×宽

圆的面积=圆周长的一半×半径

S=πr×r

=πr2

《圆的面积》教学设计 篇6

教学目标:

知识目标:了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

能力目标:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

情感目标:在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,感受极限思想。

教学重点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

教学难点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

教学过程:

一、创设情境,提出问题。

1.(出示P16中草坪喷水插图)请同学们观察这幅插图,说说从图中你能发现数学知识吗?

2这个圆形的面积指的是哪部分呢?

3今天这节课我们就来学习圆的面积。(板书:圆的面积)

二、探究思考,解决问题。

1请大家估计半径为5米的圆面积大约是多大?

2用数方格的方法求圆面积大小

①出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

②指明反馈估算结果,并说明估算方法及依据。

3在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

三、探索规律

1大家还记得我们以前学习的平行四边形、三角形、梯形面积公式是怎么推导来的吗?

2那么圆形的面积可由什么图形面积得来呢?

3拿出剪好的图形拼一拼,能成为一个什么图形?拼成的图形与原来的圆形有什么关系?

4同学们操作,教师巡视

5大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形?

6你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。

①因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。

②因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。

7用字母怎么表示圆面积公式呢?

四、应用圆面积公式

1.现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。

2第18页第1题

学生独立解答,集体订正的时候要求学生说出每一步计算过程和依据。

3第18页第2题

让学生理解题意后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。

板书设计:

圆的面积

平行四边形面积=底×高,

圆形面积公式=圆周长的1/2×半径

圆形面积公式=圆周率圆×半径2

《圆的面积》教学设计 篇7

一、教学目标

1、知识与技能

(1)知道圆的面积公式推导过程;

(2)会用圆的面积公式计算圆的面积;

2、过程与方法

经历动手操作讨论等探索圆的面积公式的过程;

3、情感态度与价值观

积极参加数学活动,体验圆的面积公式推导的探索性和挑战性,感受公式的确定性和转化的数

学思想。

二、教学重点:

圆的面积的计算

三、教学难点:

推导圆的公式的过程;

教具准备:多媒体课件、圆片、胶水、剪刀

四、教学过程:

(一)、创设情境,导入新知

1、同学们喜欢看动画片吗?今天老师给你们带来一段动画片。(出示课件)

2、师:我们要求小朋友的活动场地有多大,就是求圆的什么?(圆的面积)

3、拿出事先准备好的圆形学具,摸一摸,指一指,感受圆的周长和面积。

4、设疑:那么圆的面积怎样求呢?

5、教师让学生说出以前学过的平行四边行图形的面积公式是怎么的来的?然后复习演示平行四边行的公式推导过程。

6、要求圆的面积,怎样把圆形转化成以前学过的图形呢?

(1)、设疑导入,激起学生学习的兴趣

(2)、复习渗透转化的思想,为推导圆的面积埋下伏笔

(二)合作探究

把圆形转化成以前学过的图形探究圆的面积公式

师:同学们开动脑筋,小组合作看能把圆转化成什么图形?

(1)学生动手操作;

(2)交流演示各组拼出的图形。

(3)教师用课件演示。

教师用课件演示长方形的长与宽和圆的周长与半径的关系得出圆的面积公式S=

问:那么要求圆的面积必须知道什么条件?

(三)解决问题

(一)、已知圆的半径,求圆的面积

例1、一个圆形花坛的半径是3m,它的面积是多少平方米?

(二)、已知圆的直径,求圆的面积

例2、圆形花坛的直径的20m,它的面积是多少平方米?

(三)、已知圆的周长,求圆的面积

例3、一个圆形储水池的周长是2512m,它的占地面积是多少平方米?

四巩固练习

1、判断对错:

(1)直径相等的两个圆,面积不一定相等。。()

(2)两个圆的周长相等,面积也一定相等。()

(3)圆的半径越大,圆所占的面积也越大。()

2、根据下面所给的条件,求圆的面积。

(1)半径3分米

(2)直径20厘米

五、知识拓展

在一个边长为8厘米的正方形里画一个最大的圆,这个圆的面积是多少平方厘米?

六、总结:学生谈收获

反思:本节课较好地完成了教学目标,学生学习积极性高,课堂气氛活跃,学习效果好。学生亲身经历提出问题,动手实践,分析验证,通过把圆形转化成以前学过的图形的活动,激发学生学习数学探究新知的兴趣,让学生动手操作,动脑想象,动口说理等活动,用多种感官感知拼成图形与圆形的关系,运用推理得出圆的面积公式,让学生亲身经历知识形成和发展的过程,对知识进行再创造,体验了学习新知的喜悦。其次,通过利用面积公式解决数学中的实际问题,培养学生应用数学的意识和运用所学知识解决实际问题的能力。

《圆的面积》教学设计 篇8

教学内容:

义务教育课程标准实验教科书第十一册P67—68

教学目标:

1、认知目标

使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。

2、过程与方法目标

经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

3、情感目标

引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

教学重点:

掌握圆的面积的计算公式,能够正确地计算圆的面积。教学难点:理解圆的面积计算公式的推导。

学具准备:

相应课件;圆的面积演示教具

教学过程:

一、创设情境,导入新课

出示教材67页的情境图。

师:同学们,请看上面的这幅图,从图中你发现了什么信息?(学生观察思考)

生1:我发现图上有5个工人在铺草坪。

生2:我发现花坛是个圆形。

师:哦,是个圆形。还有没有?请仔细观察。

生:我发现一个工人叔叔提出了一个问题。

师:这个问题是什么?

生:这个工人叔叔说“这个圆形草坪的占地面积是多少平方米?”

师:你们能帮他解决这个问题吗?

师:求圆形草坪的占地面积也就是求圆的什么?

师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)

[设计意图:从主题图入手,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]

二、游戏激趣,理解圆面积的概念

师:同学们,我们先来玩个小小游戏,大家说好不好?游戏规则是这样的:选出一名男同学和一名女同学,给圆涂上颜色,比一比,谁涂得快。(涂完后,师:同学们,你们有什么话要说吗?)

生:这个游戏不公平?男同学涂的圆大,女同学涂的圆小。师:圆所占平面的大小叫做圆的面积

(板书:圆所占平面的大小叫做圆的面积)

师:现在大家知道男同学为什么涂得慢了吗?(引导学生说出男同学所涂的圆的面积大)

[设计意图:通过涂色让学生在充分直观感知圆面积的基础上,理解圆面积的含义。]

三、探究合作,推导圆面积公式

1、渗透“转化”的数学思想和方法。

师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?我们先来回忆一下平行四边形的面积是怎样推导出来?

生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。

生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?

生:这样就把一个不懂的问题转化成我们可以解决的问题。师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。

师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)

2、演示揭疑。

师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。

师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。

师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)

[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]

3、学生合作探究,推导公式。

(1)讨论探究,出示提示语。

师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:

①转化的过程中它们的发生了变化,但是它们的不变?

②转化后长方形的长相当于圆的,宽相当于圆的?③你能从计算长方形的`面积推导出计算圆的面积的公式吗?尝试用“因为??所以??”类似的关联词语。

师:你们明白要求了吗?(明白)好,开始吧。

学生汇报结果,师随机板书。

同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。

(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?

(3)揭示字母公式。

师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2

(4)齐读公式,强调r2=r×r(表示两个r相乘)。

从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?

[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]

4、公式运用,巩固新知。

师:现在大家懂得计算圆的面积了吗?我们来试试看。

四、应用公式,解决生活中的实际问题

师:接下来我们运用圆的面积计算公式来解决生活中的实际问题。

师:(出示教材第67页的情境图)这是刚才课前发现的问题。师:这道题你们能自己解决吗?(让学生尝试自己解决问题,并指名板演。再让学生说说是怎样想的,然后教师小结:求圆的面积必须知道什么条件?)[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

五、练习反馈,扩展提高

1、一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?

2、小刚家门前有一棵树,他很想知道这棵树的横截面的面积是多少,但是他又不想锯掉,你们有什么办法帮他吗?

六、全课总结

同学们,这节课我们学习了哪些知识?你有什么收获?

七、板书设计

圆的面积

圆所占平面的大小叫做圆的面积

长方形面积=长×宽

=半径

S=πr×r

=πr2

《圆的面积》教学设计 篇9

教学目标:

1知识与技能:认识圆的面积,通过操作,引导学生探索推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2过程与方法:在探究圆面积计算公式的过程中,通过大胆猜想、动手操作等活动,激发学生参与整个课堂教学活动的学习兴趣,培养学生的合作意识和探究精神;通过学生讨论交流,培养学生的分析、观察和概括能力,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。

3情感态度与价值观:通过应用,让学生体会数学的应用价值,体验数学与生活的密切联系,渗透转化的数学思想和极限思想。

教学重点:推导圆面积计算公式,运用圆面积计算公式解决实际问题。

教学难点:理解圆的面积公式的推导过程。

教学准备:课件、圆形白纸、剪刀。

教学过程

一、创设情景,引入新课

1、出示主题情景图:

①从图中你获得哪些数学信息?

②提问:“这个圆形草坪的占地面积是多少平方米?”“占地面积”指什么?

2、说一说:什么叫圆的面积?

3、揭示课题:今天我们就来研究圆的面积。(板书课题:圆的面积)

【设计意图】:出示情境图,把教学内容与生活有机结合起来,使学生从具体问题情境中抽象出数学问题,提高学生学习的积极性。

二、合作交流,探索新知

1、回顾旧知:

回顾以前学过的平面图形面积公式是如何推导出来的?

指出:转化的方法是我们学习数学新知识的一种很好而且很有用的思想和方法。转化的目的是为了——将没学过的图形转化成已学过的图形。

【设计意图】:通过知识回顾,激发学生学习的求知欲,强化数学学习的生活化。

2、思考:那么能不能把圆也转化成已学过的图形来计算它的面积呢?

3、合作探究:

(1)猜想

(2)动手操作,验证猜想。

(3)汇报交流,展示成果(分层展示学生研究成果)。

【设计意图】:通过活动,调动学生动手、动脑等多种感知觉参与活动,调动学生积极性、自觉性,培养学生观察,比较和判断思维的能力,培养学生合作交流的意识,应用知识间的转化和联系,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。

4、借助网络画板制作的动态课件展示圆面积的推导过程。

展示不同的等份数拼成不同的平行四边形,感受极限的思想。

【设计意图】:通过对圆切拼的动画演示,观察不同等份数拼成的不同图形,发现规律,让学生感受极限思想。

5、推导圆面积公式。

①比较转化后的图形与圆,你发现了什么?

②全班交流,根据学生叙述板书:

长方形面积=长×宽

圆的面积=圆周长的一半×半径

=Лr×r

=Лr

6、小结:圆的面积计算公式:S=Лr

【设计意图】:通过转化和对比,让学生参与获取知识的过程,在开放的学习氛围中积极主动地投入到观察、讨论的学习交流,从而把发现知识的过程交给学生,动静结合的呈现方式有利于学生的理解,有利于突破教学难点,对学生空间观念的形成起到了十分重要的作业,有利于发展学生的空间想象能力。

7、知识应用、内化提高

(1)、求下列圆的面积。(只列式不计算)

r=3cm

(2)、出示例1:例1:圆形花坛的直径是20m,它的面积是多少平方米?

(1)认真读题,理解题意。

(2)你认为怎样解决这个问题?

(3)学生尝试独立计算。

(4)汇报解答过程及结果,集体评价。

【设计意图】:让学生运用新知识解决生活中的实际问题,体验成功的喜悦。

四.联系生活、拓展延伸

1、公园草地上一个自动旋转喷灌装置的射程是10米,它能浇灌的面积是多少?

2、把一个周长为1884cm的长方形改围成一个圆,围成圆的面积是多少?

3、求下列圆的周长和面积。

r=2cm

4、求半圆的面积。

r=4cm

【设计意图】:拓展延伸,让学生体会到生活中处处有数学,真正体会数学的实用性。

5、回顾整理,全课总结

今天我们学到了哪些新知识?你有哪些收获?

【设计意图】:引导学生回顾学习过程,培养反思习惯,重视学生数学思想、方法的培养。

《圆的面积》教学设计 篇10

教学理念:

本课时是在学生掌握了直线图形的面积计算的基础上教学的,主要是对圆的面积计算公式进行推导,正确计算圆的面积。教学圆的面积时,教材首先通过圆形草坪的实际情境提出圆面积的概念,使学生在以前所学知识的基础上理解“圆的面积就是它所占平面的大小”。

接着教材启发学生寻找解决问题的思路和方法,回忆以前在研究多边行的面积时,主要采用了割补、拼组等方法,将多边行的面积转化成更熟悉和更简单的图形来解决,那么,在这里也可以用转化方法,让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆的面积转化为熟悉的直线图形的面积来计算,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。教学时,还要让学生认识到转化是一种很重要的数学思想方法,在解决日常问题以及在科学研究中,人们常常就是把复杂转化为简单,未知转化为已知、抽象转化为具体等方式来处理的。

教学目标:

1、通过动手操作、认真观察,让学生经历圆面积计算公式的推导过程,理解掌握圆面积公式,并能正确计算圆的面积。

2、学生能综合运用所学的知识解决有关的问题,培养学生的应用意识。

3、利用已有知识迁移,类推,使学生感受数学知识间的联系与区别。培养学生的观察、分析、质疑、概括的能力,发展学生的空间观念。

4、通过学生小组合作交流,互相学习,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣和成功。

教学重点:

运用圆的面积计算公式解决实际问题。

教学难点:

理解把圆转化为长方形推导出计算公式的过程。

教学准备:

多媒体课件及圆的分解教具,学生准备圆纸片和圆形物品。

教学过程:

一、创设问题情境,激发学生学习兴趣。

1、请同学们指出这些平面图形的周长和面积,并说说它们的区别。

2、你会计算它们的面积吗?想一想,我们是怎样推导出它们面积的计算公式的?(电脑课件演示)

[设计意图:创设问题情境,启发学生回忆长方形、平行四边形、三角形和梯形周长和面积的概念。再利用电脑课件演示,让学生对已经学过的平面图形面积公式的推导有更清晰的认识,从而激起学生从旧知识探索新知识的兴趣,并明确思想方向,有利于学生想象能力的培养。]

二、合作交流,探究新知。

1、出示圆:

(1)让学生说出圆周长的概念,并指出来。

(2)想一想:圆的面积指什么?让学生动手摸一摸。

(揭示:圆所占平面的大小叫做圆的面积。)

(3)对比圆的周长和面积,让学生感受他们的区别。

同时引出课题——圆的面积。

[设计意图:通过学生动手摸一摸,使学生能够大胆地概括圆的面积,为开展学生想象力提供了广阔的空间。另外,让学生比较圆的周长和面积,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。]

2、推导圆面积的计算公式。

(1)学生观察书本P67主题图,思考:这个圆形草坪的占地面积是多少平方米?也就是要求什么?怎样计算一个圆的面积呢?

(2)刚才我们已经回顾了利用平移、割、补等方法推导平行四边形、三角形和梯形的面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?猜一猜,圆可以转化成什么图形来推导面积公式呢?你打算用什么方式进行转化?

[设计意图:通过提问,让学生对圆的面积公式的推导先进行预测,引导学生大胆寻找求圆面积的方法,激发学生的创作灵感,提高学生的求知欲望与探究兴趣。]

(3)请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。

①分小组动手操作,把圆平均分成若干(偶数)等份,剪开后,拼成其他图形,看谁拼得又快又好?

②展示交流并介绍:小组代表给大家介绍一下你们组拼出来的图形近似于什么?是用什么方法剪拼的?为什么只能说是“近似”?能不能把拼出的图形的边变直一点?

[设计意图:给学生充分的时间动手操作,放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的。教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,让学生在合作交流中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。]

③当圆转化成近似长方形时,你们发现它们之间有什么联系?

课件演示:

师:现在,老师把圆平均分成16份,可以拼出这个近似长方形的图。想象一下,如果平均分成64份、126份??又会是什么情形?

④小结:如果分的份数越多,每一份就会越小,拼成的图形就会越接近于长方形。

[设计意图:通过电脑课件演示,生动形象地展示了化圆为方,化曲为直的剪拼过程。使学生进一步明确拼成的长方形与圆之间的对应关系,有效地认识和理解圆转化成长方形的演变过程。]

(4)以拼成的近似长方形为例,认真观看课件,师生共同推导圆的面积计算公式。

①引导:当圆转化成近似的长方形后,圆的面积与长方形面积有什么关系?并且指出拼出来的长方形的长和宽。

②长方形的长和宽与圆的周长、半径有什么关系?如果圆的半径是r,这个近似长方形的长和宽各是多少?如何根据已经学过的长方形的面积公式,推导出所要研究的圆的面积公式?

③学生讨论交流:长方形的长是圆周长的一半,即a=C/2=2πr/2=πr,宽是圆的半径,即b=r。教师板书如下:

(5)小结:如果用S表示圆的面积,r表示圆的半径,那么圆的面积计算公式就是。同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!

(6)学生打开书本P68补充圆面积的计算公式的推导过程。思考:计算圆的面积需要什么条件?

[设计意图:在推导过程中给学生创设讨论交流的学习机会,通过观看电脑课件的演示,引导式提问、试写推导过程等不同形式,来调动学生参与学习的积极性,发挥学生的主体作用,培养了学生操作、观察、分析、概括的能力。最后进行小结,巩固学生对圆面积计算公式的认识。另外通过提出问题,强调学生计算圆面积时需要的条件。]

三、实践运用,巩固知识。

1、已知圆的半径,求圆的面积。

判断对错:已知一个圆形花坛的半径是5米,它的面积是多少平方米?

=314×5×2=314(米)

(学生先独立思考,再汇报交流,共同修改。)

强调:半径的平方是指两个半径相乘。

2、已知圆的直径,求圆的面积。(教学例1)

①师:把第一题的“半径是5米”改成“直径是20米”,那么这个圆形花坛的面积又怎样算呢?(小组合作交流,探讨计算方法。)

②学生汇报计算方法,要强调首先算什么?

③打开书本P68补充例1。

3、已知圆的周长,求圆的面积。(书本P70练习十六第3题)

小刚量得一棵树干的周长是1256cm。这棵树干的横截面的面积是多少?

①引导提问:要求树干的横截面积,必须先求出树干的什么?你打算怎样求树干的半径呢?

②根据圆的周长公式,师生间推导出求半径的计算方法。

③学生独 立完成,教师巡查给于适当的指导。另外请两位学生上台板演,共同订正,并且指出计算中容易出现错误的地方。

4、一个圆形溜冰场,半径30米。

(1)这个溜冰场的面积是多少平方米?

(2)沿着溜冰场的四周围上栏杆,栏杆长多少米?

提问:知道圆的半径用什么方法求圆的面积?第(2)个问题求栏杆的长度也就是求这个圆形溜冰场的什么?用什么方法求圆的周长?

[设计意图:学生已经推导出圆面积的计算公式,以上的四道题的作用是巩固圆面积计算公式的运用,使学生对圆面积的计算方法有更深刻的理解。在练习时,大胆放手让学生进行计算,同桌间合作探讨,经过学生多次尝试解答,使他们的观察力、动手操作能力、想象力都能够得到进一步的发展,从而促进了理论与实践相结合,培养了学生灵活运用所学知识解决实际问题的能力。其中第3题通过周长求面积的计算和第4题知道圆的半径求圆的面积和周长,让学生体会到圆的周长和面积有着紧密的联系和根本的区别,使新旧知识有更好的连接,并且让学生感受到几何图形计算的灵活性。]

四、总结评价,拓展延伸。

1、今天我们学了什么知识?一起闭上眼睛回忆我们整节课的学习过程,你有什么感受啊?在计算圆的面积时有什么地方值得注意的?

2、在生活中还有很多关于圆面积的知识,老师出一个题目给同学们课后进行思考:有一个圆形花坛,中间建了一个圆形的喷水池,其他地方是草坪,求草坪的面积是多少?

一键复制全文保存为WORD