在教学工作者开展教学活动前,就不得不需要编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么教学设计应该怎么写才合适呢?的小编精心为您带来了公因数和最大公因数教学设计【优秀7篇】,您的肯定与分享是对小编最大的鼓励。
设计说明
1.创设问题情境,体会数学的应用价值。
以实际生活中的问题情境导入新课,有利于激发学生的学习兴趣,便于学生掌握新知。以铺地砖的实际问题为切入点,要铺边长为整分米数的地砖而且要求是整块数,引出求两个数的公因数的重要性,揭示数学与现实生活的联系,体会数学的应用价值,同时有利于培养学生的分析、推理和抽象概括能力。
2.鼓励自主探究,体会转化的数学思想,经历数学概念的形成过程。
引导学生主动参与学习、掌握学习方法、提高解决问题的能力是教学的最终目的。本设计引导学生通过动手摆一摆、画一画发现可以选择的地砖,然后组织学生围绕这几种可以选择的地砖的边长与长方形地面的长、宽之间的关系展开讨论,使学生在动手操作、讨论交流中经历数学问题转化的过程。
课前准备
教师准备 PPT课件
学生准备 方格纸
教学过程
⊙谈话导入,探究新知
1.导入新课。
师:同学们想不想当设计师?老师在装修房屋时遇到了一个问题,想请同学们帮忙解决。
课件出示教材62页例3情境图。
师:请同学们认真观察情境图,说一说老师遇到了什么难题。
学生汇报。
预设
生1:要给长16 dm、宽12 dm的贮藏室铺地砖。
生2:要用边长是整分米数的正方形地砖把贮藏室的地面铺满。
生3:使用的地砖必须都是整块的。
2.合作探究。
(1)学生分组讨论。
用长方形方格纸代表长16 dm、宽12 dm的贮藏室地面,每个方格可以代表边长是1 dm的正方形。小组讨论一下,正方形地砖的边长可以是几分米呢?(学生操作)
(2)学生组内交流。
①边长是1 dm。
长边、宽边可以分别铺几块呢?能用整块数地砖铺满吗?(长边16块,宽边12块,能铺满)
②边长是2 dm。
长边、宽边可以分别铺几块呢?能用整块数地砖铺满吗?(长边8块,宽边6块,能铺满)
③边长是3 dm。
长边、宽边可以分别铺几块呢?能用整块数地砖铺满吗?(长边5块,宽边4块,不能铺满)
④边长是4 dm。
长边、宽边可以分别铺几块呢?能用整块数地砖铺满吗?(长边4块,宽边3块,能铺满)
……
(3)各组汇报。
生1:我发现只有边长是1 dm、2 dm、4 dm的地砖符合老师的要求。
生2:我认为要使所用的正方形地砖都是整块的,地砖的边长必须是12和16的公因数,也就是1,2,4,所以可以选边长是1 dm、2 dm、4 dm的地砖,边长最大是4 dm。
(4)教师总结:解决这个问题的关键是找出12和16的公因数和最大公因数。
设计意图:在教学中不仅要求学生掌握抽象的数学结论,还应注意培养学生的“发现”意识,引导学生探究知识的形成过程,尽可能挖掘学生的潜能,让学生通过努力自己解决问题。
【 教学内容】
《义务教育课程标准实验教科书数学》(人教版)五(下)第79 —81 页。
【设计理念】小学数学课堂教学,应立志于让学生“研究学习”、“自主探索”,学生不应是被动接受知识的容器,而应是在学习过程中主动积极的参与者,是认知过程的探索者,是学习活动的主体,通过学生自身的活动,所“发现”和“创造”的知识较之教师硬塞给学生的知识理解得深刻,掌握得牢固,应用得灵活,同时也培养了学生发现问题、解决问题的能力。
【 教学目标】
1 、通过自学和反馈交流,理解公因数和最大公因数的意义,沟通因数、公因数和最大公因数的区别和联系。
2 、掌握求两个数最大公因数的方法,会选择合适的方法正确的求两个数的最大公因数。能初步应用求最大公因数的方法解决生活中的简单实际问题。
3 、经历探究求两个数最大公因数方法的过程,培养学生分析、归纳等思维能力。激发学生自主学习、积极探索和合作交流的良好习惯。
【 教学重点】理解公因数和最大公因数的意义,会正确的求两个数的最大公因数。
【 教学难点】初步应用求两个数最大公因数的方法解决生活中的简单实际问题。
【 教学准备】多媒体课件
【 自学内容】见预习作业
【 教学过程】
一、自学反馈
1 、通过自学你已经知道了什么?
(1 )书上介绍了( )和( )两个数学概念。
(2 )问:你认为公因数和最大公因数与什么知识有关?
生:公因数和最大公因数都与因数有关?
(3 )追问:那你认为可以怎样求两个数的公因数和最大公因数?
生:先分别列举出两个数的因数,然后找出它们的公因数和最大公因数。
(4 )你会求18 和24 的公因数和最大公因数吗?请大家试一试。
二、关键点拨
1 、列举法求两个数的最大公因数及公因数和最大公因数的意义。
(1 )你是怎样求18 和24 的最大公因数的,谁来说说?
(2 )学生反馈:
18 的因数有1 ,2 ,3 ,6 ,9 ,18 。
24 的因数有1 ,2 ,3 ,4 ,6 ,8 ,12 ,24 。
18 和24 的公因数有1 ,2 ,3 ,6 。
18 和24 的最大公因数是6 。
师:18 和24 公有的因数,叫做它们的公因数。公因数中最大的一个因数,叫做它们的最大公因数。
【设计意图 :在教学中,不仅要求学生掌握抽象的数学结论,更应注意学生的“发现“意识,引导学生参与探讨知识的形成过程,尽可能挖掘学生潜能,能让学生通过努力,自己解决问题,形成概念。】
2 、求两个数最大公因数的其他方法
师:你还有不同方法求两个数的最大公因数吗?
生1 :筛选法
先写出较大数的因数,24 的因数有1 ,2 ,3 ,4 ,6 ,8 ,12 ,24 。
从大到小找24 的因数中谁是18 的因数就是它们的最大公因数,24 、12 、8 都不是18 的因数,6 是18 的因数。
所以,18 和24 的最大公因数是6 。
生2 :分解质因数法
18 =2 ×3 ×3
24 =2 ×2 ×2 ×3 ,把18 和24 的相同质因数相乘的积就是它们的最大公因数,18 和24 的最大公因数=2 ×3 =6 。
师问:你在哪里见到过这样的方法?
生介绍书上81 页小知识:分解质因数法求两个数的最大公因数。
师:还有不同方法吗?(学生沉默)你们看看我的方法可以吗?
师介绍缩倍法:把24 缩小到它的2 倍是12 ,12 不是18 的因数;把24 缩小到它的3 倍是8 ,8 也不是18 的因数;把24 缩小到它的4 倍是6 ,6 是18 的因数。所以,18 和24 的最大公因数是6 。
3 、沟通因数、公因数和最大公因数的区别和联系
仔细观察,静静思考,因数、公因数和最大公因数到底有什么关系?
生1 :公因数和最大公因数都是因数中的一部分。
生2 :公因数都是最大公因数的因数,最大公因数是公因数的倍数。
4 、优化方法
仔细观察,静静思考,你更喜欢上面的哪种方法,为什么?
生1 :我更喜欢列举法,因为列举法简单易懂,不仅可以求出两个数的最大公因数,还可以求出它们的所有公因数。
生2 :我更喜欢筛选法,因为筛选法能更简洁、更快的求出两个数的最大公因数,也可以很快求出它们的公因数,只要再写出最大公因数的因数就是它们的公因数了。
生3 :我更喜欢分解质因数法,……
5 、集合表示法介绍
师:还可以用下面的图来表示:
【设计意图:德国教育家第斯多惠指出:“一个坏的教师奉送真理,一个好的教师则教人发现真理。”教学中,在引导学生探索问题的过程中,利用观察、发现、设问步步深入地引导学生逼近结论、求索方法。通过说思考过程、师生讨论,让学生的推理才能得以充分发挥,真正驾驭学习,成为学习的主人,为学生的自主探索发现、创新增添活力。】
三、巩固练习
1 、请选择你喜欢的方法求出下面每组数的最大公因数。
4 和8� 18 和54� 1 和7� 8 和9
(1 )学生独立求最大公因数,教师巡视指导。
(2 )反馈交流:4 和8 的最大公因数是4 ,18 和54 的最大公因数是18 ,1 和7 的最大公因数是1 ,8 和9 的最大公因数是1 。
(3 )问:你能根据最大公因数的特点把上面4 组数分成两类吗?
4 和8 ,18 和54 分成一类;1 和7 ,8 和9 分成一类。
(4 )问:你为什么这样分?说说你的理由。
生1 :4 是8 的'因数,8 是4 的倍数,它们的最大公因数是较小数4 ;18 是54 的因数,54 是18 的倍数,它们的最大公因数是较小数18 。1 和7 ,8 和9 的最大公因数都是1 。
生2 :我知道1 和7 是互质数,8 和9 也是互质数,所以它们的最大公因数是1 。
(5 )追问:你是怎么知道互质数这个数学概念的?
生:我是从书上83 页的小知识中看过来的。(生介绍书上83 的小知识:互质数——公因数只有1 的两个数叫做互质数。)
(6 )你能很快说出下列各组数的最大公因数吗?
45 和15� 51 和17 13 和39
1 和15� 45 和46� 2 和9 13 和18� 3 和11
生报答案,教师板书。
(7 )仔细观察,你认为什么样的两个数会是互质数,它们的最大公因数是1 。
生1 :1 和任何一个大于1 的自然数都是互质数。
生2 :相邻的两个自然数(0 除外)是互质数。
生3 :任意两个质数都是互质数。
生4 :一个质数和一个合数,只要没有倍数关系就是互质数。
……
(8 )你能很快抱出54 和48 的最大公因数吗?你认为求两个数的最大公因数要注意什么?
2 、电脑显示:小红家卫生间是长方形,如右图,小红爸爸准备装修卫生间,要在地面上铺正方形地面砖,要选边长为几分米(整数)的地面砖,才能不用锯分就能整齐地铺满地面砖呢?地板砖的边长最大是几分米?
3 、提高练习:
(1 )综合题:两个自然数的和是52 ,它们的最大公因数是4 ,最小公倍数是144 ,这两个数各是多少?
(2 )开放题:有两个50 以内的两位数,这两个两位数的最大公因数是6 这两个两位数分别是多少?
【设计意图:练习形式多样,层次分明,让学生体会数学的综合性和应用性,注重认知结构的深化和发展,能有效地培养学生的创新思维。】
四、全课总结
这节课你们学了哪些知识?有什么收获?
附:预习作业
1 、内容:课本第79 至81 页例1 和例2 及做一做。
2 、方法:一边看书一边画出你认为重要的信息,并理解。
3 、解决问题:
(1 )书上介绍了( )和( )两个数学概念。
(2 )既是18 的因数又是24 的因数的有( ),其中最大的一个因数是( )。
教学目标:
1.使学生理解和认识公因数和最大公因数,能用列举的方法求100以内两个数的公因数和最大公因数,能通过直观图理解两个数的因数及公因数之间的关系。
2.使学生借助直观认识公因数,理解公因数的特征;通过列举探索求公因数和最大公因数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。
3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心。
教学重点:
求两个数的公因数和最大公因数。
教学难点:
理解求公因数和最大公因数的方法。
教学准备:
小黑板
教学过程:
一、铺垫准备
1.直观演示,作好铺垫。
出示边长6厘米和边长5厘米的两个正方形。
提问:观察这两个正方形,哪一个能正好分成边长都是2厘米的小正方形?
2.引入新课。
谈话:根据上面我们看到的',如果一个长度是原来边长的因数,就能正好全部分割成小正方形。现在就利用这样的认识,学习与因数有密切联系的新内容,认识新知识,学会新方法。
二、学习新知
1.认识公因数。
(1)出示例9,了解题意。
启发:观察正方形纸片的边长和长方形的长、宽,哪种纸片能把长方形正好铺满,哪种不能正好铺满?先在小组讨论,说说你的理由。
交流:哪种纸片能把长方形正好铺满,哪种不能?你是怎样想的?
结合交流进行演示,引导观察用正方形纸片铺的结果,理解边长6是长方形两边12和18的因数,能正好铺满;(板书:126=2 186=3)边长4是12的因数,但不是18的因数,就不能正好铺满。(板书:124=3 184=4……2)
(2)启发:想一想,还有哪些边长是整厘米数的正方形,也能把这个长方形正好铺满?为什么?先独立思考,再和同桌说一说,并说说你的理由。
教学目标:
1、探索找两个数的公因数的方法,会用列举法找出两个数的公因数和公因数。
2、经历找两个数的公因数的过程,理解公因数和公因数的意义。
3、通过观察、分析、归纳等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。
教学重点:
1、会用列举法找出两个数的公因数和公因数。
2、经历找两个数的公因数的过程,理解公因数和公因数的意义。
教学难点:
用多种方法正确地找出两个数的公因数和公因数。
教学教法:
《新课程标准》指出:有效的教学活动不能单纯地依靠模仿与记忆。自主探索与合作交流是学习数学的重要方式,而本节课学生对因数已经有了初步的认识,在教法与学法上,可以让学生在半独立的状态下进行自主学习、交流探索。而教师在交流过程中,主要是引导、组织学生归纳找公因数的方法,让学生在经历体验、探索中去归纳、总结找公因数的方法。这也是体现学生的主体地位和教师的主导作用。
教学学法:
学法上,可以让学生在半独立的状态下进行自主学习、交流探索。而教师在交流过程中,主要是引导、组织学生归纳找公因数的方法,让学生在经历体验、探索中去归纳、总结找公因数的方法。这也较好的体现学生的主体地位和教师的主导作用。
教学过程:
一、复习导入,学习新知
因为学生已经学习过找出一个数的因数,因此先让学生找出4和6的因数,询问学生是怎样找的?并复习一个数的因数的特点。由此,进入新课。
1、师:同学们,12和18,你能很快找出它的因数吗?根据学生的回答,呈现在集合圈内。
2、师:仔细观察它们的因数,你有什么发现?学生会说,发现有相同的因数:1、2、3、6
师:那么准,那你们看看它们的因数你发现了什么?请大家找一找,在12和18的因数中有没有相同的因数?相同的因数有几个?
生同位交流,共同找出:1、2、3、6。
师:像这样即是12的因数,又是18的因数,我们就说这些数是12和18的公因数。此时师出示集合图形。
3、师:中间这一区域有什么特征?填的什么数?
生汇报:中间所填的数应该即是12的因数又是18的因数。
师:在这些公因数里面,哪个数?生:6。
师:对,6在这两个数的公因数里面是的,那么我们就说6是12和18的公因数。
师:这就是我们这节课要学习的内容——找公因数。
师板书课题:找公因数
4、师:让学生有自己的话说一说什么叫公因数,和公因数。在总结的基础上课件出示公因数的概念,并给时间让学生记忆。
5、师:想一想,我们刚才是怎样找到12和18的公因数的?由此总结出找两个数的公因数的方法。并板书出来。同时指出在找公因数时要注意什么。
(这一环节的设计,让学生探索找两个数的公因数的公因数的方法。并且能很快地找出来。同时这也就较好的达到了教学要求:让学生理解公因数和公因数。突出了教学重点:探索找两个数的公因数的方法。)
这一层次的设计我准备用时12分钟。
二、尝试练习,合作探究
在做书45页“练一练”中的1、2两题
(1)利用倍数关系找公因数
师:请大家把书翻到第三45页,独立完成第1小题。
8的因数有:1、2、4、8。
16的因数有:1、2、4、8、16。
8和16的公因数有:1、2、4、8。
8和16的公因数是:8
老师在做这道题目是可以直接写出最后的答案8?老师是不是有特异功能呢?师引导学生观察:8和16之间是什么关系?与它们的公因数有什么关系?
生汇报:16是18倍数,所以8和16的公因数是8。之后再及时出一些这方面的题练习,找4和8、9和3,28和7的公因数。从中,你发现了什么?
然后师放手给学生,鼓励学生自己小结;如果较大数是较小数的倍数,那么较小数就是这两个数的公因数。
(2)利用互质数关系找公因数
师:请大家独立完成第二题。
生汇报5的因数有:1、5。
7的因数有:1、7
5和7的公因数是:1
师同上一样引导学生独立观察5和7之间是什么关系?与他们的公因数有什么关系?
分小组讨论汇报。
生:5和7是质数,所以5和7的公因数是1。
练习:找2和3,11和19,3和7的公因数。并及时的进行总结:两个质数的公因数是
教材的练习到此结束,我又补充了找8和9的公因数?再练习,总结出:相邻的两个自然数(0除外)它们的公因数是
由于学生还不知道什么叫做互质关?我在此进行了一个小补充:像这样只有公因数1的两个数叫互质数。如果两个数是互质数,那么他们的公因数只有1。这一安排,为他们今后的学习打下了坚实的基础。
(3)、整理找公因数的方法
师:今天我们学习了哪些方法找公因数?
生:列举法,用倍数关系找,用互质数关系找
师:我们在做题时要观察给出的数字的特征,运用不同的方法去找出它们的公因数。
(教师在讲解找公因数时,不仅要告诉学生具体的方法,更重要的是将这些单独的内容联系起来,给出学生统一的解题步骤,这样学生才有章可循。)
这一环节的设计我也准备用时15分钟。
三、以智力陷阱的形式巩固练习,让学生体验成功。
完成书第46页的3、4、5题。可以让学生独立完成,师巡视指导。在巡视的过程中对于后进生要特别的指导点拨。
巩固练习准备用时8分钟。
四、全课小结
用2分种对本节课的知识进行归纳总结。
五、作业设计
本节课,我设计了基本练习、提高练习和拓展练习,都以课件的形式呈现。较好的对本节课的知识进行了巩固和提高。
板书设计:
我本节课的板书设计力图全面而简明的将本课的内容传递给学生,便于学生理解和记忆。
找公因数
分别找因数
公因数
公因数
倍数关系→较小数
互质数、相邻数→1
各位评委老师,我仅从教材、教法、学法、及教学过程、板书设计等几个方面对本课进行说明。这只是我预设的一种方案,但是课堂千变万化的生成效果,最终还要和学生、课堂相结合。
说课的不足之处还请多多指教,我的说课到此结束,谢谢各位评委老师。
教学内容:
人教版小学数学五年级下册第60~62页
教学目标:
1、结合具体的生活情景,通过确定取值范围、动手操作验证、小组合作、交流,经历公因数和最大公因数的产生,并理解其意义。
2、渗透集合思想,体验解决问题策略的多样化。
3、培养学生的抽象能力和解决问题能力,并且会求100以内两个数的最大公因数,感知公因数和最大公约数在生活中的广泛应用。
4、以去“游乐园”游玩为契机激发学生学习数学的兴趣。
教学重点、难点:
理解公因数与最大公因数的定义;
探索寻找两个数的最大公因数的方法。
教学准备:
多媒体课件 ;小奖品;小组学案各一份;方格纸每组5张、彩笔;每个人制作学号卡佩戴好。
教学过程:
一、复习铺垫---抢夺气球
1、情境引入
(1)、出示“数学游乐园”
师:想去“数学游乐园”玩吗?(想)乐园里不仅有许多好玩的,表现好的还可以获得很多的奖励哦!
(2)、看现在乐园里正在举行“抢夺气球”的活动呢!谁想来抢呢?(回答课件中的问题,答对一个获得一个奖励)
3的因数有:6的因数有:
8的因数有:12的因数有:
二、讲解新授
1、游乐园的储存室长16dm,宽12dm。如果要用边长是整分米的正方形地砖把储存室的地面铺满(使用的地砖都是整块)。可以选择边长是几分米的地砖?边长最大是几分米?
你知道铺地砖的要求是什么吗?(交流 “正方形地砖” “都是整块的” “边长还要是整分米数” 什么是整分米数?)
2、合作探究
(1)阅读并讨论
用长方形方格纸代表长16分米、宽12分米的储藏室地面,每个方格可以代表边长是1分米的正方形。小组讨论下,边长可以是几分米呢?(学生操作)
(2)合作与交流
A、交流边长是“4” 为什么?
问:你们觉得行吗?
答:铺满
B、交流边长是“2” 出示一个角
问:你觉得长边、短边可以分别铺几块呢?
答:铺满
C、交流边长是“1” 铺一个角
问:你觉得长边、短边可以分别铺几块?
答:铺满
认识公因数和最大公因数
(1)讨论交流
还有没有别的铺法?边长是3分米的地砖行吗?为什么?边长是5分米呢?
宽边虽然可以铺整数块,但长边不行,会多出来。16÷5,12÷5都有余数,得到的不是整数,而题目要求是整块的
(2)抽象公因数概念
我们发现边长1、2、4分米的地砖能铺满,而且是整数块,其它的都不行。那“1、2、4”与16和12到底有着什么特殊关系呢?
(1、2、4不仅是16的因数又是12的因数。1、2、4是12和16的公因数)
同意吗?
那我们就用以前的方法找找16、12的因数。
16的因数有:1、2、4、8、16 12的因数有:1、2、3、4、6、12
你发现什么?
我发现1、2、4既是12的因数又是16的因数。
能不能简单的说说,它们是12和6的什么数吗?
1、2、4是12和16公有的因数,1、2、4是12和16的公因数
板书“公因数”
说能说一说什么是公因数
几个数共有的因数,就是这几个数的公因数
那16和12的公因数有:1、2、4
(3)用集合圈表示
我们可以用集合圈来表示两个数的公因数
现在中间的表示什么呢?应该填?
那这圈里的(指左边、右边)填?表示?
(4)认识最大公因数
边长最大是几分米? 你是怎么想的?
(从公因数中找最大的。边长大的话占地面积就要大,铺的块数就要少)
实际上这4就是16和12的最大公因数,板书“最大公因数”
16和12的最大公因数是4
2、合作交流、探索方法
怎样求18和 27 的最大公因数。(看哪组的方法多)
小组谈论,实践交流。 交流反馈、小结方法。
这些方法实际都是属于列举法,在解决问题时你可以选择自己喜欢的方法。
3、找一找,填一填
8的因数: 16的因数:
8和16 的公因数: 8和16 的最大公因数:
想一想:8和16之间有什么关系?与它们的最大公因数有什么关系?
小结:如果较大数是较小数的倍数,那么较小数就是它们的最大公因数。
找一找,填一填
5的因数: 7的因数:
想一想:5和7的公因数有哪些?
小结:像这样的两个数:公因数只有 1 的两个数,叫做互质数 。
互为质数的两个数的最大公因数是1.
三、巩固练习
1、游戏:看谁站的对。
座位号是 12 的因数而不是 18 的因数的同学站左边、是 18 的因数而不是 12 的因数的站右边、是 12 和 18 公因数的站中间。
四、全课总结:学生畅谈本节课的收获。
一.教学设计学科名称:
北师大版数学五年级上册《找最大公因数》
二.所在班级情况,学生特点分析:
我校地处城郊,所带班级学生共25人,学生的思维比较活跃,比较善于提出数学问题,能在小组合作学习中主动探究知识。本册一单元,学生已经理解了因数和倍数的意义,能用乘法算式、集合等方式列举出一个数的因数。因此用列举法找最大公因数没有困难。而利用因数关系、互质数关系找还有一定的难度。因为学生不易发现这两个数具有这些关系。
三.教学内容分析:
教材直接呈现了找公因数的一般方法:先用想乘法算式的方式分别找出12和18 的因数,再找出公因数和最大公因数。在此基础上,引出公因数与最大公因数的概念。教材用集合的方式呈现探索的过程。在练习1、2中引出了用因数关系、互质数关系找最大公因数,教师要引导学生发现这个方法并会运用。教师要注意让学生经历知识的形成过程,要重视引发学生的数学思考。
四.教学目标:
知识与技能:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。
过程与方法:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。
情感、态度与价值:培养学生对学习数学的兴趣。通过观察、分析、归纳等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。
五.教学难点分析:
教学重点:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。
教学难点:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。
六.教学课时:
一课时
七.教学过程:
(一)复习
师:出示3×4=12,( )是12的因数。
生:3和4是12的因数。
(二)探究新知
1、认识公因数和最大公因数
(1)师:除了3和4是12的因数,12的因数还有哪些?
生独立完成后汇报,板书 12的因数有:1、2、3、4、6、12。
师:要找出一个数的全部因数,需要注意什么?
生:要一对一对有序地写,这样才不会遗漏。
师:照这样的方法,请你写出18的全部因数。
生独立写后汇报:18的因数有:1、2、3、6、9、18
(此时出示集合图)
师:在这两个圈里,应该填上什么数?请大家完成正在书45页上。
生做后汇报师板书于圈中。
(2)师:请大家找一找在12和18的因数中,有没有相同的因数,相同的因数有哪几个。
生找出12和18相同的因数有:1、2、3、6
师:像这样,既是12的因数,又是18的因数,我们就说这些数都是12和18的公因数。
师:这里最大的公因数是几?
生:最大是6。
师:6就是12和18的最大公因数。这就是我们这节课学习的内容——找最大公因数。
板书课题:找最大公因数
(此时出示集合图)
师:中间这一区域有什么特征?应该填什么数字?独立思考后小组讨论
(生分组讨论)
汇报:中间区域是12的因数和18的因数的交叉区域,所填的数应该既是12的因数又是18的因数,也就是12和18的公因数填在这里。
师:请大家完成这个题。(生做后订正)
2、探索找最大公因数的方法
(1)列举法
刚才我们找最大公因数的方法叫做列举法。(板书:列举法)
请大家用这种方法找出下面每组数的最大公因数。 9和15
(2)利用因数关系找
师:请大家翻到书第45页,独立完成第一题。
生汇报:
8的因数: 1、2、4、8
16的因数: 1、2、4、8、16
8和16的公因数: 1、2、4、8
8和16的最大公因数是 8
师引导学生观察最后一句,想想8和16之间是什么关系,与他们的最大公因数有什么关系?
生独立思考后分组讨论。
生汇报:8是16的因数,所以8和16的最大公因数就是8。
师引导生归纳并板书:如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。(板书:用因数关系找)
练习:找出下面每组数的最大公因数。 4和12 28和7 54和9
(3)利用互质数关系找
师:请大家独立完成第二题。
生汇报:
5的因数: 1、5
7的因数: 1、7
5和7的最大公因数是 1
师引导学生观察最后一句5和7之间是什么关系,与他们的最大公因数有什么关系?
生独立思考后分组讨论。
生汇报:5和7都是质数,所以5和7的最大公因数就是1。
师:像这样只有公因数1的两个数叫互质数。如果两个数是互质数,那么它们的公因数只有1。(板书:用互质数关系找)
练习:找出下面每组数的最大公因数。 4和5 11和7 8和9
(4)整理找最大公因数的方法
师:今天我们学习了用哪些方法找最大公因数?
生:列举法,用因数关系找,用互质数关系找。
师:我们在做题时,要观察给出的数字的特征选用不同的方法。
(三)练习
书46页3、4、5题。生独立完成,师巡视指导。
(四)全课小结
这节课你有什么收获?
八.课堂练习:
在括号里填写每组数的最大公因数
6和18( ) 14和21( ) 15和25( )
12和8( ) 16和24( ) 18和27( )
9和10( ) 17和18( ) 24和25( )
九.作业安排:
完成练习册上的习题
十. 附录(教学资料及资源):
1、教师用书:北师大版五年级数学上册
2、数字卡片
十一. 自我问答:
短除法求最大公因数在书中暂时没有出现,只在求最小公倍数后以“你知道吗”的形式出现,但这种方法我觉得很实用,不知教材的意图是什么?究竟怎样处理?
教学反思:
本节课是在学生掌握了因数、倍数、找因数的基础上进行教学,通过解决故事中的问题,让学生逐层深入地懂得找公因数的基本方法。在此基础上,引出公因数和最大公因数的概念,在填写公因数时,学生往往容易出现重复的现象。
在教学过程中,我鼓励孩子归纳总结找最大公因数特征和方法。先看两个数是不是倍数关系,如果是倍数关系,那么小的那个数就是最大公因数。如果两个数是互质数或者是相邻的两个自然数,那么这两个数的最大公因数就是1。
找最大公因数时,我向学生介绍了短除法,当数字比较大时,用短除法比较简单。
教学目标:
1、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
2、在探索新知的过程中,培养学好数学的信心以及小组成员之间互相合作的精神。
重点难点:
初步了解两个数的公因数和最大公因数在现实生活中的应用。初步了解两个数的公因数和最大公因数在现实生活中的应用。
教学方法:
自主学习、合作探究
教学过程:
一、激趣导入
(约5分钟)
课件展示教材62页例3,今天我们要给这个房子铺砖大家感兴趣吗?要求要用整数块。
二、自主学习
(约5分钟)
1、几个数( )叫做这几个数的公因数,其中最大的一个叫做( )
2.16的因数有( ),24的因数有( ),16和24的公因数是( ),最小公因数是( ),最大公因数是( )。
3.A=225,B=235,那么A和B的最大公因数是( )。
4、用短除法求出99和36的最大公因数。
三、合作交流
(约13分钟)
小组合作学习教材第62页例3。
1、学具操作。
用按一定比例缩小的方格纸表示地面,用不同边长的正方形纸表示地砖,我们发现边长是 厘米的正方形的纸可以正好铺满,没有剩余,其它的都不行。
2、仔细观察,你们发现能铺满的地砖边长有什么特点?把你的发现在小组里交流。
3、总结。
解决这类问题的关键,是把铺砖问题转化成求公因数的问题来求。
四、精讲点拨
(约8分钟)
根据自主学习、合作探究的情况明确展示任务,进行展示。教师引导讲解。
五、测评总结(约9分钟)
1、达标练习
(1)要将长18厘米、宽12厘米的长方形纸剪成正方形的纸,没有剩余,边长可以是几厘米?最长是几厘米?
(2)玫瑰花72朵,玉兰花48朵,用这两种花搭配成同样的花束(正好用完,没有剩余),最多能扎成多少束?每束有几朵玫瑰花和玉兰花?
(3)有一个长方形纸,长60厘米,宽40厘米,如果要剪成若干个同样大小的小正方形而没有剩余,剪出的小正方形的边长最长是多少?
2、全课总结
这节课你都学到了什么知识?有什么收获?
3、作业布置
练习十五5,6题。
板书设计:
最大公因数(2)
铺砖问题:求公因数