作为一位杰出的老师,通常需要准备好一份教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。教学设计应该怎么写才好呢?这次为您整理了小学数学《圆的认识》教学设计优秀8篇,希望可以启发、帮助到大家。
今天听了胡老师上的《圆的认识》让我耳目一新的感觉。胡老师《圆的认识》这节课进行了认真的准备,取得了良好的效果。听了这节课之后,我认真的反思:
一、以学生为本,正确把握教学起点。
圆是一种常见的平面图形,也是最简单的曲线图形,这节课要让学生了解圆的概念以及直径半径等的概念,所以这是一节概念教学课。本节课教师没有绑住孩子的手脚、束缚学生的思维,而是以学生的起点为教学起点,让学生通过操作、观察、尝试、验证等活动加深对圆的认识。而关于圆的直径、半径等的特征,老师就放手让学生通过折、量、画、比等活动自主探索、发现,符合客观实际,学生在操作中体验感悟,并最终理解掌握。
二、直观教学相得益彰。
我们都知道,小学生是以直观形象思维为主的,所以我们的教学要时时注意让学生通过直观去体验,去感悟。我觉得胡老师这节课这一点做得比较成功。比如,教学“直径、半径有无数条”这样的特征,学生想象起来会比较困难,因此教师就采用多媒体课件加以直观的演示,从而非常直观地凸显了这一知识点。
另外,本节课注重联系学生的生活实际,启用生活中的素材开展数学教学,让学生主动参与知识的建构等等方面教师都比较注重,也取得了相应的效果。
值得商榷的地方:
1、圆上、圆外、圆内的知识介绍缺乏,致使学生总结半径、直径的概念时,说不清白。
2、教师在教学“同圆内每条直径都相等”时,屏幕上的直径依次旋转至同一条直径重合,相信会给学生留下非常深刻的印象,从而加深对特征的理解和掌握。
今天听了周老师上的《圆的认识》,让我感受很深。本节课注重联系学生的生活实际,启用生活中的素材开展数学教学,让学生主动参与知识的建构等等方面教师都比较注重,也取得了相应的很好效果。可以看出周老师在研究这节课的时候做了很多的打磨,听了这节课,为我今后的课堂教学指明的方向,下面简单从三个方面谈谈我的学习体会:
一、以学生为本,正确把握教学起点。
圆的认识是一节概念教学课。圆是一种常见的平面图形,也是最简单的曲线图形,这节课要让学生了解圆的概念以及直径半径等的概念与特征。我们知道,学生对圆已经有了相当的认识,他们的学习不可能是零起点,所以我们的教学也不能是“零起点”,我们的教学要以学生为本,正确把握学生的学习起点。周老师从一个简单的游戏,引出圆周上的点到中心点都一样长,这就是学生对半径的特征的直观感性认识,所以本节课教师没有再绑住孩子的手脚从而束缚学生的思维,而是以学生的起点为教学起点,让学生通过操作、观察、尝试、验证等活动加深对圆的认识。再比如,用圆规画圆,学生早已经尝试过,所以上课时老师就把它定位为画圆的注意点,讨论怎么样把圆画好。而关于圆的直径、半径等的特征,学生也并非一无所知,老师就放手让学生通过折、量、画、比等活动自主探索、发现,符合客观实际,学生在操作中体验感悟,并最终理解掌握。
二、在自主学习中展开探究新知,掌握圆的知识特征。
大胆放手让学生自己去“探”。以剪的圆为素材,用圆规和尺子为研究工具,有目的、有意识安排学生用量一量、折一折、画一画的方法合作探究圆心、直径和半径之间的关系。启发学生用眼观察,动脑思考,动口参加讨论,用耳去辨析
同学们的答案,让学生运用多种感官参与学习的全过程,经历观察、操作类比,归纳等过程,培养学生的探索精神和创造意识。这一开放式的教学方法,使学生在具体、直观的操作中发现了半径、直径的本质特征、以及它们之间的关系,不但突出了教学重点,而且分散了教学难点,收到了较好的学习效果。整个环节都让学生在动手操作与合作交流中感悟、体验、认识圆的各方面知识。都是学生感兴趣的活动,他们变被动的操作为主动的探究,不是在学数学,而是在“做数学”和“数学的思考”。教师作为指导者与参与者,自然的引导学生将活动过程上升为数学概念来认识。把学生的学习过程统整在综合性和探究性的研究活动中,学生对圆的特征的认识过程就是一种研究与发现的过程,是一种对话与共享的过程。学生在获得基本知识和技能的过程中,数学思维不断发展,同时也获得了积极丰富的情感体验。
三、在拓展与应用中尽显圆的魅力。
本课练习设计执教者通过指导学生对解决问题过程的回顾与反思,增强运用有关策略解决问题的自觉性,不断提升学生的数学素养。本课的练习不仅巩固了半径与直径的关系,还教会学生善于观察、善于联想的良好习惯。之后,通过墨子对圆的描述进一步彰显圆的文化内涵,同时让学生感受到我国数学文化历史悠久萌发民族自豪感。最后,又回到生活中解释其中的奥秘,注重应用性再次让学生感受圆的独特魅力,让学生不知不觉地走进了圆的世界,不知不觉地学会画圆,了解圆心、直径、半径等概念,不知不觉地了解到圆与现实生活的联系,不知不觉地经历一次次“再创造”的过程,把学习的主动权充分交还给了学生。
教学内容:
人教版六年级上册第四单元第一课时。
教学目标:
1、知识目标:使学生认识圆,知道圆的各部分名称。掌握圆的特征,理解直径与半径的关系。初步学会用圆规画圆。
2、技能目标:让学生从生活中认识圆,借助动手操作活动,发现规律,培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。
3、情感目标:通过操作、研讨,培养学生独立探索能力和创新、合作的意识。
教学重点:
掌握圆的基本特征,理解直径与半径的关系。
学具准备:
圆的实物、剪好的圆片、圆规、直尺
教具准备:
细线、图钉、剪好的圆片、三角板
教学过程:
一、悬念产生好奇,好奇带入新课
(一)设置悬念
师:同学们,你们知道吗?(课件展示、图文并茂)
1、车轮为什么都是圆形的?
2、篮球场的中间为什么要设计成圆形呢?
3、枪口、炮口为什么都是圆形的?
师:同学们,这些问题你们暂时还不必回答,但老师还有一个问题需要马上回答,这三个问题都与什么有关?
(当学生回答是“圆”时,教师板书课题)
师:当同学们通过这堂课的学习,对圆有一定认识后,你们再回答这三个问题,相信你们的答案会更完整、更圆满。(在黑板的一侧板书:圆满)
[设计意图]不拘泥于教材内容,从学生年龄和心理特征出发,用心扑捉圆在生活中、自然中的原型,巧妙地创设了“三个问题”情境,引发学生的好奇心,从而使他们带着一种“打破沙锅问到底”的向往与追求的意向,以的状态进入学习角色。同时,在“暂时还不回答”的关子下,把“三个问题”集中在“圆”上,旗帜鲜明地拉开了这节课的序幕,这一导课不仅意味深长,激发了学生的学习兴趣,并开始不知不觉地渗透了“圆的文化特征”意识,可谓是一举两得。
二、在猜想中探究,在探究中感悟
(一)生活中的圆
师:生活中你们见到哪些物体是圆形的?
(学生回答时,教师可要求学生将已准备的实物举起展示)
(二)运动中的圆
师:你们都是生活中的有心人。那么下面的情况可能会出现怎样的现象呢?(课件展示)
1、一粒石子抛入平静的水面时
2、电风扇的扇叶转动时
(三)探究圆的形成
一根细线,用图钉固定一端,另一端绑着一支粉笔旋转一周。
1、师:接下来做个小实验,老师用图钉固定线的一端,将细线拉直,绑有粉笔的一端旋转一周,会出现什么现象?
师:松开细线的这头,粉笔还能转圈吗?(孕伏“定点”意识),图钉按住起什么作用?
2、师:刚才老师是怎样操作画出一个圆的?
学生交流
师:图钉按住的一端(不动),带粉笔的一端我们把它看作一个点,这个点是(运动的),怎么运动的?
师:(把线拉直)这样运动时动点就与固定的这点距离(保持不变)。粉笔在这个运动轨道上旋转一周就得到了一个(圆)。
3、师:如果把细线放长,粉笔继续旋转一圈,发生了什么变化?看来这细线的长短可以确定(所画圆的大小)
(孕伏“定长”意识)
[设计意图]以上三个教学环节,以“感知—想象—发现”为线索,逐步推进,串成学生探究“圆的形成”这一过程。感知是认识世界的开始,是思维、想象等一切心理活动的基础。通过“生活中的哪些物体是圆形的”举例,既激活了学生已有的经验,同时为过度到想象提供了丰富的表象,这样想象力也就引向了更成熟的高度。最后用他们的想象力猜测、感悟“圆的形成”两大核心要素圆心和半径,从而为后面的“圆”的本质认识打下了扎实的基础。
(四)从画圆中认识圆
1、通过回想前面的游戏,让学生在感悟“圆的形成”过程中思考:你会画圆吗?
2、学生尝试画圆(教师巡视,收集学生不圆的和圆的作品。)
3、投影展示学生作品、学生互相交流
(投影展示“不圆”的作品)
师:请你评价下这幅作品?
你想提点什么建议?
师顺着学生的阐述引出“定点”、“定长”。
(让学生自己“由误到悟”,在交流、切磋中对“画圆时要注意什么”印象深刻)
(投影展示“圆”的作品)
师:请欣赏这幅作品是怎样被圆规创造出来的?
两个学生介绍如何画圆,师追问“画的圆为什么有大有小?”
随着学生反馈画圆的三个步骤,教师同时用课件演示圆规画圆。
4、板书:定点、定长、旋转一周。
定点确定圆的位置,定长确定圆的大小
5、如何在篮球场上画圆?
师:我们会在纸上画圆了,其实生活中还有很多地方需要画圆。例如:要在篮球场上画一个很大很大的圆,你准备怎样做?与小组里的同学说一说你的想法。
学生反馈、相互交流补充。
[设计意图]“画圆”的环节,不仅仅只是学生掌握画圆的技巧、学会用圆规画圆的过程,更重要的是继前三个环节后,进一步提升学生对圆的初步认识,由表象逐步向抽象转化的过程。在这里教师还十分关注学生情绪,尊重学生意愿,在学生跃跃欲试时,采用先让学生尝试画圆,并利用可能“出现的问题”,揭示圆的画法、“圆的位置”和“圆的大小”等深层次问题,这是数学课堂教学的一种自然本色。数学来源于生活、用于生活,画圆后教师提出了一个开放性的问题:如何在篮球场上画圆?让学生从“纸上谈兵”,过渡到解决现实情境问题,与“探究圆的形成”有个呼应。
(五)解读圆的概念
师:刚才我们用圆规画圆、用绳子画圆,工具不一样,画出来的却都是圆,这是为什么?
生1:原理都一样
生2:都是按三步骤来画的
师小结:画圆时都有两个点,一个点是固定的,一个点是运动的,两个点之间的距离保持不变,,动点在这个运动轨道上旋转一周,得到的图形就是(圆)。所以,圆就是由无数个点连成的一条什么线?(曲线、封闭的曲线)
(课件演示)
(六)认识圆的各部分名称及其特征
1、师:有关圆你还了解哪些知识?
教师将“圆心o”“半径r”“直径d”写在3张卡片上,请学生一一贴在黑板上圆的有关之处。
师:谁能在黑板上的圆中将它们画出来并贴好。(3个学生依次上台)
2、直接揭示圆心的概念
3、半径
师:像这样的半径,你会画吗?
学生动手画半径
师:你是怎样画的?
(注意引导学生阐述“从哪里出发画到哪里”)
师:什么样的线段叫半径?揭示半径的概念。
(板:半径r)
师:在同一个圆里,像这样的半径还能画吗?有多少条?为什么有无数条?
生:圆上有无数个点。
师:那它们的长度都有怎样的关系呢?谁来说说你的想法?
4、直径
师:直径你会画吗?在你的圆片上画出直径。
师:你是怎样画的?那什么样的线段叫直径呢?
你们和数学家们总结差不多呢!翻到56页,全班齐读。
(板:直径d)
师:在同一个圆里,直径有多少条?
师:那它们的长度都有怎样的关系呢?谁来说说你的想法?
(板书:无数条长度都相等)
5、师:其实早在2500多年前,我国伟大的教育家、科学家就曾提出有关圆的概述(课件出示)
师:一中的“中”指的是?那“同长”的意思是?
6、判断:以下圆内哪些线段是半径,哪些线段是直径?
7、半径与直径的关系
①师:你会怎样去验证你的。想法?
在小组里商量一下,再派代表反馈。
课件验证:在同一个圆里,直径长度是半径的2倍,半径是直径的1/2。d=2rr=1/2d
②制造冲突(展示学生事先剪的一大一小的两个圆)
疑问:在这两个圆中,半径、直径二者还存在以上的关系吗?
(板书:在同一个圆里)
[设计意图]探究圆的特征是本节课的重点,又是难点。怎么有个突破,使学生能轻松地接受,本环节是采用“画”、“量”、“折”,让学生动手操作、自主探究的方法。“画”是发现,是印证;“量”是验证、确认。这一为学生搭建的自主探究学习的平台,既能使学生学得生动活泼,积极参与,而且将对所学的知识理解得更深刻,记忆得更牢固,也正好印证了“儿童的智慧出在他们手尖上”这句话。
三、运用知识,拓展思维
(一)小裁判
1、两端都在圆上的线段叫做直径。()
2、半径2厘米的圆比半径1厘米的圆大。()
3、圆的直径都相等。()
4、在同一个圆里,圆心到圆上任意一点的距离都相等。()
(二)你能帮忙找到这个圆的圆心吗?
[设计意图]由于本节课是属概念教学课,作为反馈练习,仅设计了两大题。通过这两大题训练以检查学生对概念理解的情况,并解决学生容易混淆或出错的问题。
四、解释自然中圆,欣赏人文中圆
(一)解释自然中圆
师:课的一开始,我们还留下三个问题(课件重返“三个问题”):由于时间关系,我们现在集中解决第一个问题好吗?
1、分组讨论:车轮为什么都是圆形的?
2、小组派代表汇报(教师根据学生的汇报,利用课件演示下面两个主要因素)
①平稳(因为车轴在车轮圆心上,同圆半径都相等,确定了车与地面距离不变,所以平稳)
②车速快(车轮接触地面只是一个点,摩擦力小,车速就快了。)
[设计意图]这是一道引导学生用所学知识解决实际问题的训练题,以小组合作、同学互助,共同讨论为主要解题形式,以帮助学生综合运用知识、提高技能,培养学生不断探索、不断发现的精神,增强互助合作、敢于创新为目标。同时,本练习起到了“前后呼应”之教学艺术功能,成了学生善于动脑、勇于解题的动力,使学生在成功解答后有一种满足感,以进一步激发他们的求知欲。
(二)欣赏人文中圆
1、引言:同学们,世界是美妙的、神奇的,有了圆更增添了她的梦幻般的色彩。请欣赏
2、课件演示:(配乐)
摩天轮、花丛中肆意绽放的鲜花、中国传统的圆形剪纸、陶瓷艺术、圆形建筑、2008年奥运奖牌、神秘的阴阳太极图……
还有古老的东方,中国人特别重视中秋、除夕、元宵等佳节,月下尝饼、桌上汤圆…这就意味着团圆、圆满;大陆同胞送给台湾同胞的团团、圆圆两只熊猫,不也就是盼望祖国早日统一,海峡两岸同胞早日团圆吗?
圆,在我们身上遗留下的印痕是多么深刻而广远。圆,是和谐的象征,是幸福的感受!
同学们,在这优美的旋律中,我们这堂课也接近尾声了。这节课愉快吗?你觉得这节课上得圆满吗?
[设计意图]教学本质是一种文化。我们有理由向学生传递教学本身的内涵和鲜活的文化背景,引领他们通过学习感受数学文化的博大精深,努力使数学所具有的文化特征浸润于学生心间,成为学生数学成长的不竭动力源泉,让数学课堂摆脱原有习惯思维与阴影,真正美丽起来。为此,设计“欣赏人文中的圆”这一环节,就是引发学生领略“圆”的神奇魅力及其背后所蕴含的人文的、文化的特征,拓宽学生对“圆”的认识视域。同时,让学生真切地感受中国人对“圆”的特殊情感,激发他们爱祖国、爱学习的热情,为进一步学好“圆”打下坚实的基础。
第一课时:
圆的认识
教学内容:
科书第85~87页例1、例2,以及随后的“练一练”,练习十三第1~3题。
教学目标:
1.使学生在观察、画图、讨论等活动中感受并发现圆的基本特征,知道圆的圆心、半径和直径的含义;会用圆规画指定大小的圆;能用圆的知识解释一些日常生活现象。
2.使学生在活动中进一步积累认识图形的经验,增强空间观念,发展数学思考。
3.使学生进一步体验图形与生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学过程:
一、引入新课
1.游戏:摸图形。
出示装有长方形、正方形、平行四边形、三角形、梯形和圆形纸片的袋子。
提出要求:同学们喜欢做游戏吗?老师给大家带来了一个袋子,里面装有很多平面图形。请一位同学把它们依次摸出来,其他同学一起说出图形的名称。
2.出示学生摸出的圆形纸片,指出:这是一个圆形纸片(板书:圆)。圆与我们以前学过的三角形、长方形等多边形相比有什么不同?它有哪些有趣的特征?这节课我们一起来研究这些问题。
板书:圆的认识。
二、教学例l
1.提问:你在生活中见过圆吗?举例说一说。
学生交流时,注意以下几点:第一,如果学生说的圆形物体就在身边,可以让他们指一指物体上的圆;第二,课前要准备一些典型的、大小不同的圆形物体或图片,当学生说到这些物体时,可及时呈现出来;第三,如果学生把球当成了圆,可以通过比较让他们知道球是立体图形,而圆是平面图形。
2.追问:说了这么多的圆,看了这么多的圆,大家想不想动手画一个圆呢?先动脑筋想一想,再用手头的工具动手画一画。
3.学生独立画圆。组织交流时,可结合教材所列的画法,有针对性地介绍一些典型画法。如果有学生想到了用圆规画圆,不要急于让他们说出具体的操作过程。
4.启发思考:圆和以前学过的三角形、长方形等多边形相比有什么不同?
在交流中相机明确:以前学过的长方形、正方形、三角形、平行四边形和梯形都是由线段围成的,而圆是由曲线围成的图形。
5.介绍圆规:刚才,我们用不同的方法画出了圆,真可谓“八仙过海,各显神通”。但通常我们会借助一个专门工具来画圆,这个工具就是圆规。圆规有两只脚,一只脚是针尖,另一只脚上装着用来画圆的笔,两只脚可随意叉开。
6.提出要求:你能试着用圆规画出一个圆吗?
进一步要求:边画边想,用圆规画圆一般分为哪几个步骤?需要注意些什么?
7.先让学生说说自己画圆的过程,教师在黑板上示范画圆,适时板书:两脚叉开。固定针尖。旋转成圆。
引导反思:你认为画圆时应注意些什么?
根据学生的回答,小结:有针尖的一只脚要固定在一点;旋转圆规时两脚间的距离必须保持不变。
8.组织练习:请大家把圆规两脚之间的距离统一确定为4厘米,按上述步骤再画一个圆,在小组里比一比,谁画得好。
9.介绍圆心、半径和直径。
结合介绍在图中画出相应的线段,标出相应的字母,提醒学生注意每个字母的写法。再让学生结合自己画圆的过程,说说对这些概念的理解,并在自己所画的圆中标出圆心、画一条半径和一条直径,并分别用字母表示。
(1)圆的大小是由什么决定的?
学生回答后,教师总结:画圆时圆的大小是由圆规两脚间的距离决定的。
(2)指名在黑板上的圆中表示出两脚的距离。
教师总结并板书:圆规两脚间的距离就是连接圆心和圆上任意一点的线段,叫作半径,用字母r表示。
(3)教师画出直径,说说这条线段有什么特点。
学生回答后,教师总结并板书:通过圆心并且两端都在圆上的线段,叫作直径,用字母d表示。
10.探究圆的特征。
(1)出示例2的问题。
(2)学生在小组里操作、讨论,形成结论。教师巡视。
(3)小组汇报,教师板书
①在同一个圆里,半径有无数条,直径有无数条。
②在同一个圆里,半径的长度都相等,直径的长度都相等。
③同一个圆中直径的长度是半径的2倍,半径的长度是直径的一半。
④圆是轴对称图形,有无数条对称轴。
(4)说说你是怎么得出每一条结论的,指名验证。
三、巩固练习,加深理解
1.完成“练一练”第1题。
(l)出示三个图形。
(2)指名说说各圆的半径和直径。
(3)评议:为什么其他的线段不是半径或直径?
2.完成“练~练’’第2题。
(1)学生独立画圆,并标出各部分的名称。
(2)指名说说画圆的过程。
3.完成练习十三第1题。
(l)学生独立填表。
(2)指名说说思考过程。
4.完成练习十三第5题。
(l)学生独立操作后,在小组里交流。
(2)集体汇报交流。
5.作业:练习十三第2、3、6题。
四、课堂小结
师:这节课我们学习了什么?你有哪些收获?
学生发言,教师点评。
板书设计:
圆的认识
①在同一个圆里,半径有无数条,直径有无数条。
②在同一个圆里,半径的长度都相等,直径的长度都相等。
③同一个圆中直径的长度是半径的2倍,半径的长度是直径的一半。
④圆是轴对称图形,有无数条对称轴。
教学目标:
知识目标:
组织学生通过画一画、折一折、观察体验圆的特征,认识圆的各部分名称,理解在同一个圆内直径与半径的关系。
能力目标:
让学生了解、掌握画圆的多种方法,初步学会用圆规画圆;转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。
德育目标:
让学生养成在交流、合作中获得新知的习惯。
教学重点:
探索出圆各部分的名称、特征及关系。
教学难点:
通过动手操作体会圆的特征。
教具准备:
硬币、线绳、图钉、铅笔头、圆规、课件。
教学过程:
一、创设情境、激发兴趣:
1、创设情境
师:同学们,你们喜欢运动会吗?老师今天给你们带来了一场紧张而又激烈的塞车运动。看,它们已经来到了起跑线上,一号、二号、三号谁将会成为最后的冠军,请同学们大胆预测。
师:让我们把掌声献给冠军,送给一号车手。同学们预测的很好,那么一号的赛车为什么成为了最后的冠军呢?
生:因为一号的赛车,轮子是圆的。
师:其它的车手为什么会比一号的赛车慢呢?
生:因为它们的轮子是方形,是三角形,有棱有角的。
2、联系生活、举例说明
师:你在生活中,哪些物体上还有圆?指名学生回答日常生活中含有圆的物体。
师:圆在我们的生活中是无处不在的,汽车作为现代工业化的产物,正是因为装上了圆形的轮子,不仅极大的方便了我们的生活出行,也大大提高了社会生产效率;家庭用的圆形套装餐具,满足我们审美需求的同时,也更让我们味口大开,看来圆在我们的生活中的确很重要。下面就让我们对圆作更进一步的认识吧!揭示课题:圆的认识
二、自主探索,初步体验:
1、第一次自主探索画一画。
师:你能创造出一个任意大小的圆吗?
生:能。
师:同学们真有自信,下面就请同学们前后四人小组为单位,可以利用学具袋中老师给大家准备的工具,也可以自己想办法去创造圆,比一比看哪个小组想到的方法最多?
学生进行小组合作,分工创造圆。
生:进行小组反馈。
教师注意将各种方法进行概括分类,学生可能会出现的答案有①利用硬币或其它圆形轮廓描圆;②利用图钉和线画圆;③用圆规画圆;④用圆形物体用力在纸上压印圆;⑤线一头系上重物旋转形成圆……
师:这么多的方法都能创造出圆,那么这些方法有什么缺点吗?
学生说一说各种画法的缺陷:(1、利用圆形轮廓描和印圆,方便但圆的大小固定。2、线画圆,比较麻烦但可以画很小的圆也可以画很大的圆。3、旋转形成圆不能留下痕迹。4、圆规画圆,方便且一定大小的圆都能画)
师:那你认为这么多方法中用什么画圆最科学最方便?
生:用圆规画圆最方便。
2、第二次尝试画一画-----用圆规画圆。
师:那请同学们用圆规自已尝试画一个圆。
没有画成功的同学把图案展示,我们愿意帮助你寻找原因。
生:(1、画移位的,2、重新画又找不到位置的,)如:问为什么会移位,为什么会找不到原来的位置?
学生回答问题的原因,教师边示范边讲解:所以画圆的时候要先确定位置,点上一点,把钢针戳在点上,用手捏住圆规的头,岔开圆规两脚的开口,将圆规略微倾斜一点,旋转一周,一个圆就画好了。请大家也一起试试看。(板书:定点、定长、旋转一周)
师:学生根据老师的讲解独立画圆。
师:大家画的圆的位置都一样吗?
生:不一样。
师:为什么会不一样?
生:因为刚针戳的位置不一样,(或点的位置不一样)
师:看来这个点能决定圆的位置,(板书:能决定圆的位置)
师:请同桌再互相比较一下你们刚才画的圆大小完全一样吗?
生:不一样。
师:为什么会不一样?
生:因为我们圆规的开口大小不一样。
生:圆规的两脚开得越大,所画的圆也就越大,圆规两脚间的距离能决定圆的大小。(师板书:能决定圆的大小)
师:那请同学们把圆规两脚间的距离定为3厘米,来画一个圆,并用剪刀将你所画的圆剪下来。
1.圆的画法
(1)自由画
师:拿出自己的圆规,在白纸上画一个圆。(师板书:画圆)
生:独立画
师:谁能说说你是怎样画出来的?
生:… …(用自己的话描述)
师:谁能用老师的教具圆规上黑板上画圆?(让两名同学上黑板画,提醒其余同学仔细观察他们是怎样画的?)
反馈①:一只手摁住圆规固定的脚,另一只手使圆规的另一只脚旋转,顺利画出圆。
反馈②:教具圆规不好使唤,想固定的那只脚不停移动,用力过猛又使圆规两脚的距离发生变化,无法画出圆。
师:为什么这位同学用圆规能轻巧地画出圆,而另一位同学却画不出圆呢?
(点拨总结出画圆的步骤:“分开”、“固定”、“旋转”。分别板书)
2.认识圆心
师:(以黑板上学生画的圆为例)用圆规画圆时针尖固定的这一点(用彩色粉笔点出)叫圆心(板书“圆心”)一般用字母O来表示(标出:O)。请同学们在自己画的圆上点出圆心,标出字母O。
生:独立完成。
3.认识半径
师:举起你们刚才画的圆,互相看一下,都一样大吗?
生:不一样大。
师:为什么大的大,小的小,与什么有关?
生:与圆规两脚分开的大小有关。
师:你们的意思是圆规两脚间的距离长时,画出的圆大,两脚间的距离短时,画出的圆就小。请在你的圆上画出一条表示两脚间距离的线段。
生:独立画。
师:(以黑板上学生画的圆为例)请同学们仔细看,圆规的一只脚固定在圆心O,当另一只脚旋转到A点时,圆规两脚间的距离是OA(画出线段OA);当另一只脚旋转到B点时,两脚间的距离是OB(再画出线段OB)
问:线段OA和OB相等吗?
生:相等。
师:你是凭观察得出的,那怎样验证呢?
生:测量。
师:指名上黑板测量OA与OB的长并报告测量结果。
生:确实一样长。
师:在这个圆的曲线上,像A、B这样的。点可以找出多少个?
生:无数个。
师:表示两脚间的距离的线段可以画多少条?设想一下它们的长度如何?
生:无数条且长度都相等(板书)
师:我们刚才研究的画圆时圆规两脚间的距离就叫做圆的半径(板书:半径)一般用字母r来表示。给你们刚才画的半径标上r。
师;半径这条线段的一个端点在哪里,另一个呢?
生:一个端点在圆心,另一个端点在圆的曲线上。(板书:圆心 圆的曲线上)
师:那什么叫半径呢?
生:用自己的话说(师完成半径定义的板书)
师:同一个圆里,半径有什么特点?
生:无数条且长度都相等。
4.认识直径
师:把自己画的圆剪下来
生:独立剪
师:示范对折,打开,出现一条折痕,用食指摸折痕;换个方向再重复一次。
生:在教师示范下同步进行。
师:像这样再重复折几次
生:独立对折、打开、摸折痕。
师:你折了好多次,可以发现什么?
反馈①:每折一次出现一条折痕。
追问:你折了几次,出现了几条折痕,与他不一样的呢?像这样的折痕在你的圆里能再折出来吗?
反馈②:对折后圆的两边能完全重合,圆被平均折成两份。
反馈③:每折一次出现一条折痕,每条折痕都是圆上的线段。
反馈④:这些折痕相交于圆心。
追问:你对折出几条折痕,谁折出的折痕比他多,他说的结论正确吗?在你的圆里,这样的折痕可以折出多少条?这个结论正确吗?
反馈⑤:这些折痕都一样长。
追问:怎样验证?
生:测量
师:量出你圆里每条折痕的长度
生:汇报结果。(指导学生说:“在我的圆里,… …”)
师:刚才说了这样的折痕有无数条,所以可以怎样下结论?
生:同一个圆里,所有的折痕长度都相等。
师:谁能给“折痕”起个名字?
生:直径(板书:直径)
师:直径一般用字母d来表示,在自己的圆里给折痕画出一条直径,标上字母d。
生:完成
师:同一个圆里,直径有多少条,长度有什么特点?
生:略
师:直径这条线段,它通过了…?它的两个端点分别在哪里?
生:通过圆心,两个端点都在圆的曲线上。(完成直径定义的相应板书)
反馈⑥:这些折痕的长度是半径长度的2倍或直径的长度是半径的2倍。
师追问:你是怎样得出这个结论的,说说道理。
生①:直径通过圆心,以圆心为界,可以把直径分成两条半径。
生②:在我的圆里,经过测量可以验证这个发现,我的圆里直径的长度都是□厘米,半径的长度都是□厘米,所以说直径是半径长度的2倍。
师:换过来说,半径的长度就是直径的… …。生:略师:写出字母公式:d=2r r= d 2 ,注意强调“同一个圆里”。
(以上6点反馈,学生说出多少就处理多少,先说出哪一点,就先处理那一点。)
一、 复习引入
1、以前我们学习过很多的平面图形,现在请大家回想一下,我们都学习过哪些平面图形?让学生回答,并及时给予鼓励。
2、在我们学习这些图形中有一个图形是我们没有系统学习过的图形?(圆)
3、出示课题:&rdqu;圆的认识&rdqu;
一、揭题
1、 直线图形
师:(出示三角形、长方形、正方形、平行四边形、梯形的平面图)三角形、四边形都是由线段围成的平面图形,线段有什么特点?
生:线段有两个端点,是直的,可以度量。
师:所以我们称三角形、四边形是平面上的直线图形。(板书:直线图形)
2.曲线图形
师:(出示圆的平面图)这是我们学过的… …
生:齐说“圆”(板书:圆)
师:相对于线段围成的直线图形,圆是由曲线围成的,所以我们称圆是平面上的一种曲线图形。(板书:曲线图形)
3.引入圆的特征讨论
师:想一想:你周围的物体上哪里有圆?
生:(举例略)
师:同学们一年级时就初步认识过圆,现在都六年级了,你现在知道多少有关圆的知识?
生①:圆是一种优美的图形,建筑设计中应用广泛,如:圆形花坛,圆形装饰图案。生②:圆形便于滚动,所以车轮都是圆的。
生③:一张白纸经折叠后可以剪出一个近似的圆。
生④:(举起自己的圆规)这是圆规,用它可以画圆。
师:车轮为什么是圆的?为什么用圆规可以画出圆来呢?这就需要认识圆有什么特征,下面就来学习“圆的认识”。(板书:圆的认识)