作为一位刚到岗的人民教师,课堂教学是我们的任务之一,教学反思能很好的记录下我们的课堂经验,教学反思要怎么写呢?如下是细致的小编sky为大伙儿找到的8篇《植树问题》教学反思,欢迎参考阅读,希望大家能够喜欢。
现代教育理论认为,只有当数学问题和学生现实生活密切结合时,数学才是具体的、生动的、富有生命力的,才能培养学生的问题源泉。本课以植树活动的学习情境为载体,根据小学生认知规律和发展水平,激发他们的探究欲望。引导学生体验多样化的算法,通过较优化与多样化的算法相互验证来学习“两位数除以一位数”这一知识。
教学时,为了使学生的数学学习过程变得生动有趣,让学生在获取数学知识的过程中,获得积极的情感体验。我着重从以下几个方面开展。
1、创设一个贴近学生现实的教学情境,激发学生积极参与的愿望。
2、让学生通过动手操作、独立思考、小组合作等方式给学生提供一个自主探究的空间,让学生体验探求新知的乐趣。
3、练习生动有趣,学生在快乐中完成练习。
不足之处:
1、班上人太多,有四五个学生在玩小棒,没有制止。
2、学生展示很多很好,但占有时间较多,练习时间较少。
3、小组合作中,学困生照顾得不够,感觉掌握得不好。
植树问题是新人教版五年级上册第七单元的内容。本节课我教学了课本117页例1内容,主要教学两端都栽的植树问题。反思本课教学过程,我觉得以下方面做得比较成功:
一、在教学中,我不忘让学生感受到了数学来源于生活,也应用于生活的道理。比如:最开始以谜语激趣,让学生猜到“手”。以每个人都具备的“手”开始,让学生感知棵数与间隔之间的关系。再用任意一组座位上的人与他们之间间隔的关系,引出课题“植树问题”。这样既有趣味性又贴近学生的生活。接着,例题又是校园植树问题,以及后面让学生思考植树问题的应用领域等等,都是来源于生活的例子。
二、在教学过程中,我注重了对数形结合意识的渗透。给出了例题,学生猜想之后,引导学生画图模拟实际栽树,通过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的关系,就此向学生渗透复杂问题简单化的思想。其后,改变路长,让学生通过画图的方法再次验证,并完成表格,从而发现规律。
三、在教学过程中,我重视数学模型的建立。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。所以,建立数学模型是十分关键的一步。因此,我在教学中设计了“理解信息—形成猜想—化繁为简—交流汇报—发现规律—应用规律”的教学流程,意在让学生经历“猜想—验证—建立数学模型—应用”这一过程,从而建立“植树问题”数学模型。
四、关注植树问题模型的拓展和应用。
植树问题的模型是现实世界中的事件,它源于生活,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解,我做了两方面的工作:一是加强归类,出示生活实例,告诉学生“这些现象的事物间都存在着间隔,把这类问题� 我设计了4道练习题,引导学生进一步体会,从而使学生感悟数学建模的重要意义。
这节课虽然不乏成功之处,但也有许多遗憾。
一、是操作的实际性。在学生画图探究不同路长情况下间隔数和棵数的规律时,还是有个别同学不知道如何画。可能是操作方法交待不够清楚,以致部分学生无从下手,影响操作效果。
二、是在黑板上板书的同学,虽然在屏幕上给出了标准答案,但缺乏在黑板上板书同学的评价。
三、没有对规律进行变式。比如:得出规律时,可以说说“间隔数=棵数-1,全长=间隔数×间隔长”等等。
今后教学改进措施:
一、课前一定要备学生,充分了解学情。
二、深钻教材,讲重点知识时,多预设几个答案。
三、寻求学生最能理解的教学方法去教学。
《植树问题》以前被演绎出了许多经典课例。因此在教学准备阶段,我认真地研读了很多课例,发此刻诸多课例中,存在着这样一个共同的特点:任课教师都个性重视关于“植树问题”的三种不同类型的区分,即所谓的“两端都栽”“只栽一端”与“两端都不栽”。普遍采用了“学生独立探究(或分组探究)、反馈交流、教师总结”的模式进行教学。并将“三种状况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在应对新的类似问题时不假思索地直接加以应用。同时在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。
透过对教材和各种相关的教学资料的深入解读,我认为“植树问题”就教学而言,可分为两个不同的教学目标:
一、明确引出“间隔数”与“棵数”这两者的关系,突出“一一对应”的思想,并
二、总结出相关的计算公式“总长÷间距=间隔数”,并透过公式帮忙学生更好地去掌握这一解题模式。
反思整个教学过程,我认为这节课在以下几个方面还是处理得比较好:
1、这节课主线明朗清晰,即从生活中抽取植树现象,并加以提炼,然后透过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。
2、我注重教学资料的整体处理,对教材进行了整合和重构,设计的例题是一个开放性的题目,开放性的设计,使课�
3、植树问题的思维有必须的复杂性,对于刚接触植树问题的四年级学生来说,则更有必须的难度了。所以,我让学生根据示意图用算式来表示出植树的棵数,学生在列式计算的过程中,透过→←直观的观察初步感知三种状况:两端都栽“棵树=间隔数+1”,只栽一端“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。之后,再引导学生用“一一对应”的思想,举起右手比划比划,分析植树问题三种不同的状况,即“两端都栽”“只栽一端”与“两端都不栽”,从而真正理解这三种状况下,棵数与间隔数的关系。
4、学生列式计算出三种栽法的棵数后,我引导学生思考:这三种状况,我们在列式计算棵数时,第一步都是先求什么,怎样求?透过学生的小组讨论后得出:要求棵数,得先求间隔数,并清楚地总结出相关的。计算公式“总长÷间距=间隔数”,透过公式帮忙学生更好地去掌握这一解题模式。
5、注意反映数学与人类生活的密切联系。巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都内含与植树问题相同的数量关系,它们都能够利用植树问题的模型来解决它,感悟数学建模的重要好处。
我感觉这节课的不足之处有以下几点:
1、数学的思想方法是数学的灵魂。本册安排“植树问题”的目的之一就是向学生渗透复杂问题从简单入手的思想,本节课没有让学生体验到“复杂问题简单化”的解题过程。
2、一堂课上下来,觉得还是对学生扶的很牢,没有完全放开,以至课堂中还有很多不足之处,期盼日后调整改善。
3、对课堂的生成问题处理还不够灵活,不能进行很好的利用。
在今后的教学中,期望能透过自己一点一滴的积累和改善,提高自己的业务水平和调控、处理课堂生成的潜力,在不久的将来,能看到更棒的自己。
小学数学《植树问题》听后反思
6月8日,我们所有数学教师观看了北京某校的分层递进展示课。这节课是郝老师指教对的四年级下册的《植树问题》。以下就是本人对《植树问题》的感悟。
《植树问题》就是通过生活中的实例,初步体会解决植树问题的思想方法,培养从实际问题中探索规律、找出解决问题的有效的能力。郝老师都能研读教师用书,钻研教参,设计出生动而实效的教学过程。让学生在学习中学会总结规律。而郝老师所设计的课平实而实效,合理的利用了分层测试卡进行教学。让每个学生都做园林设计师,为植树设计,并为自己的设计解说。郝老师也进行评价,最后引导学生理解植树的棵数与间隔数的关系。郝老师是将例1和例2合为一节课,将三种植树情况都进行了引导和归纳。总之,一节相同的课,给我们带来了不同的感受。教师的把握教材和教学风格,让我深深的觉得把握教材的重要性,只有把握住教材,学生才能收益。
通过这堂课,给我最大的感受就是,在课堂上学生都很"自由"都能发挥学生自己的想法。教师都能善于倾听学生的发言,特别是郝老师,在她那柔和的声音中,调动学生的思维,鼓励学生发言。知道学生需要的是什么。郝老师是位经验老道的教师,在备课的'同时也备学生,把所有可能学生会回答的结果都要有所准备。把每天的平时课上成汇报课,也要把汇报课上成平时课,让每一节课都扎实的度过,而不是虚架子。这是给我最大的感悟,同时也在告戒自己,在平时要关注学生的表现.关心学生在课堂上的每一分钟,做到不遗漏.
一节同样内容的课堂,学生有着不同的表现。这就是教师的魅力和处理课堂、驾御课堂的能力。在一节内容没有起伏,较死板的内容时,就能体现教师的整体素质。如何将枯燥的知识让学生愉悦的接受,并能转化为学生自己的知识?一直都是教师在研究和学习的。看似课堂气愤很活跃、学生兴趣较高,但学生所学到的知识却少之又少,这样的课是失败的!若课堂气氛是低沉的,学生兴趣不高,这样的课堂和教学也是失败的!所以在这次听课中让我深深的感受到了学生在课堂上的喜悦。
总之,在这节课中我有许多收获,郝老师还运用的让学生动手操作,数形结合的方法,也很值得我们借鉴。
在一条线段上植树的问题包括:只栽一端、只栽中间、两端都栽的几种情形。例1主要研究两端都要栽的植树问题,也是这一系列内容的起始课。本节课通过一些生活中的事例,让学生根据不同的情况总结出规律,并利用这一规律解决类似的实际问题。现实生活中与“植树问题”类似的有很多:如安装路灯、花盆的摆放、站队中的方阵、锯木头、走楼梯等等。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的`关系,因此,抽取比较有代表性的“植树问题”,作为数学模型研究,总结这一类问题的解决方法和策略。植树问题的教学主旨是向学生渗透有关植树问题的一些思想方法和策略,提高学生的综合分析、推理能力。
学生在学这节内容之前,已经初步积累了一些探索规律的经验,由于这种规律在日常生活中常见,学生容易在生活中找到相关的原型,因而也比较容易体会到探索规律的乐趣和成功感。
教师是学习的引导者,学生是学习的主人,教师在学生的学习过程中起到点拨、渗透、引导的作用。在本节课中,我力图体现学生的主体地位,发挥学生的主观能动性。因此,我采用自主探究式学习模式,学生通过画图,尝试动手“种树”。发现规律,应用规律。通过有序的操作、思考、实践等活动,使学生的所想、所悟与直观形象结合,经历知识的探究过程,渗透数学学习方法,深刻体会到解决植树问题的思想方法内涵。
植树问题是非常生活化问题。其中包含两端都栽;只栽一端和两端都不栽,以及封闭图形的栽树。然而由此衍生出的锯木头,敲钟,上楼梯,以及汽车站点,公交车发车班次等问题是非常有趣的。
在教学中,我尽可能引导学生,用图示法,看手法,以及站队法等直观方法帮助理解,以促使孩子们学会分析问题的方法。同时在引导学生读题的过程中,对问题进行逐字逐句的分析,让孩子们理解总长,间距,间隔数等名词。同时在直观操作中理解,总长除以间距等于间隔数。通过站队,让孩子们清楚的看到,站队的人数总比间隔数多一,这属于两端都栽。同时通过画图,看手指和指间隔进一步理清间隔,间距,棵树之间的关系。
对于封闭图形,我采用同学拉圆圈的形式,通过数人数和间隔数,发现规律。
同时对于多边形栽树,端点都栽的问题,我让孩子们六人一组合作,可以站队,也可以画图来学习。孩子们学习兴趣极高,通过归纳汇报,收到了不错的效果。
然而,还有一部分孩子,学习数学建模的方法有待进一步培养。一部分孩子不动脑,总是以旁观者的角色,等靠要,不主动学习,不自己分析,学习停留在背的模式,使得教学效果参差不齐。会学的学精,后进的只知皮毛。题目稍加变化,便无从下手。
针对以上问题,在今后的教学中,还应化大气力培养孩子们自觉学习,勤于思考的`习惯,让他们找到正确的学习方法,只有这样,学习才不会僵化。
本节课的内容是在学习两端都栽、两端都不栽的基础上进行教学的。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。
成功之处:
1、多种方法解答,拓展学生的思维。在例3的教学中,通过学生自主探索,发现四种解题方法如下:
方法一:黑色棋子+白色棋子=可以摆的棋子
19×2 + 17×2
=38+34
=72(个)
方法二:每边的个数×4边=可以摆放多少个
18 × 4 = 72(个)
方法三:每边能放个数×4-重复的4个=可以摆放的棋子
19×4 - 4
=76-4
=72(个)
方法四:每边看作17个,有4边,再加上四个角的4个。
17×4 +4
=68+4
=72(个)
通过这几种方法的展示,让学生不仅仅局限于一种解题思路,而是根据自己的实际水平选择适合的方法,利用培养学生思维的灵活性和拓展性。
2、不拘泥于课件的使用。在例3的教学中,虽然每种解法都制作了课件,但是在实际的。教学中发现利用在黑板实际画图,分析每一种解法,更加有利于学生对此解法的分析,利用学生对每种解法的理解。
不足之处:
在拓展解题思路的同时,相应地就减少了练习的时间,导致练习量不足。
再教设计:
每种解法不再利用课件进行展示,在黑板上画图进行分析和理解,减少课件制作上的费时费力。
“植树问题”是新课程标准实验教材四年级下册的内容,本课安排“植树问题”的目的在于向学生渗透复杂问题从简单入手的思想。
教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。
我这节课教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。我在十几年前仅接触过一年小学数学教学,今参加赛课,感觉特别好,反思整个教学过程,我认为我执教的这节课整体是成功的。
首先,设计流畅简单易懂。
整节课设计基于我班学生实际情况,课前创设情境使学生明确要学习的内容,紧接着引出例题探讨植树问题,不规定间距,同时改小数据,将长度改成20米。目的在于,让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里改小数据,有利于学生的思考,主要照顾后20℅的学生。然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。这节课的设计依据了认知规律:通过例题感知间隔,以例题为载体突破教学重点难点,以生活中植树问题的应用为探讨对象,了解植树问题实质,多角应用拓展植树问题的认识。整节课条理清晰、层次分明、浅显易懂,始终围绕重点内容进行难点的突破。
其次,注重实践体验探究。
教学中,我创设了情境,向学生提供多次体验的机会,注重借助图形帮助学生理解建构知识。在教学过程中,我时刻对数形结合意识的渗透。教学中我先激励学生自己做设计,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面自己设计的植树问题:间隔2米、4米、10米,而栽树的棵数比段数(间隔数)多1。这样就把整个分析、思考、解决问题的`全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
再次,联系生活拓展思维。
有意义的学习是学生在具体情景中体验自主建构,体验和建构是学生学习的关键。体验是建构的基础,没有体验,建构就没有意义。体验是学生从旧知向隐含的新知迁移的过程。设计中,虽然创设了情景,但一次的体验不能达到继续建构学习的水平。所以,这节课我多次向学生提供体验的机会,而且创设能够激发学生共鸣的情境。从自身、教室、做操、楼房等身边熟悉的事物,引发学习兴趣,产生共鸣,激发探究欲望。
这节课虽扎扎实实,但问题也存在着。
一、针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的能力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数-1,路长=间隔数X 间隔长”等等知识的扩散。
二、把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。我可以利用线段图或者实例来帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。