身为一位到岗不久的教师,教学是我们的任务之一,对学到的教学新方法,我们可以记录在教学反思中,那么教学反思应该怎么写才合适呢?旧书不厌百回读,熟读精思子自知,如下是勤劳的小编帮家人们收集的六年级数学圆的面积教学反思优秀4篇,欢迎借鉴。
本课采用课件形式,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,让学生在自主探索中合作交流,使教学过程达到最优化。
一、让学生多种感官参与学习,形成正确的几何概念,掌握图形的特征及内在联系,激发学生的兴趣,使学生乐学。
如揭示圆的面积定义,基本建立了圆的面积概念。又如运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进了学生良好思维品质的形成,达到了预想的教学目的。
二、把数学虚拟实验引入几何的教学中,以研究的方式学习圆的面积,突出学生在学习中的主体地位,有效培养学生的创新意识。
例如通过剪切、平移将平行四边形、三角形、梯形拼合成与它面积相等底等高的长方形、平行四边形时,课件提供的虚拟实验,使它们的面积公式推导过程完整展示在学生面前。学生不仅概括归纳出面积计算方法,感悟到转化的思想在几何学习中的妙用。而且学生在抽象、概括、归纳推理过程中接受严密的逻辑思维训练,形成一种学习几何知识的方法,产生一种自我尝试,主动探究,乐于发现的需要、动机和能力。从而顺利的想到圆的面积计算公式也可以这样推导。
教学中先动画展示等分圆的过程,再演示出拼合成长方形的过程,通过几组类似的实验,等分的份数递增,拼成的图形越来越接近于长方形,让学生通过操作实验和观察、比较得出这样的事实,拼成的长方形的面积和圆的面积相等,长方形的宽相当于圆的半径,长相等于圆周长的一半,圆面积的推导过程就完整的展示出来。对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的'问题。 因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。这一节课里我觉得学生学得很主动,由于大胆放手让学生运用以有的知识经验去解决新问题,学生感受到了成功的喜悦。同时我也觉得在新课改的理念下我们把学习的主阵地还给学生,学生的各方面能力得到了很大的提高。通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图
但是在教学过程中,对于圆的面积公式还应让学生多点时间去思考,去推导。还可以让学生用其它的方式去推导、理解。在细节的设计上还要更精心。
《圆》的教学是小学数学教学的重要组成部分,而圆的面积又是其教学中的重点和难点,它是后面要学习的圆柱和圆锥的基础,其重要性不言而喻。学习本节内容的`知识基础是圆的认识以及长方形、平行四边形、三角形、梯形等平面图形面积的推导过程。转化的数学思想是学习本节内容的策略和学习手段。
在学习“圆的面积”公式推导时,我让学生先说说以前学过的平面图形面积推导的过程与方法,进一步渗透“转化”的教学思想,让学生猜想:圆也是平面图形,能不能用转化法,把它转化成以前学过的图形推导出来呢?然后让学生看书,引导动手操作:先把圆平均分成2个半圆,把每个半圆平均分成若干份,展开,交错拼在一起,观察拼成了什么图形?(近似的长方形。)课件演示:再把半圆分成更多等份拼在一起。学生发现:分的份数越多,拼在一起就越接近长方形。然后学生观察思考:通过这样拼,什么变了?什么没变?拼成后长方形和原来的圆有什么关系?
学生明确了:它们的面积相等,长方形的长=圆周长的一半,宽=圆半径,进而推导出圆的面积计算公式。通过这样的剪、拼、验证,把圆转化成已学过的平面图形(长方形),从而推导出了圆的面积计算公式。通过这一学习过程,学生不仅获取了新知,更提高了学习能力。
《圆的面积》是小学数学教学中的一个难点,又是学习圆柱与圆锥的基础,圆面积公式的推导过程运用了“极限”的思想和方法,这对小学生来讲是深奥难懂的。教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形(主要是长方形)来计算面积,引导学生自主推导出圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂问题的策略。
学习此知识之前,学生已初步认识了圆,理解了面积的含义,并且掌握了长方形、正方形、平行四边形、三角形、梯形的面积计算公式的推导过程,因此学习圆的面积公式推导过程时只需要教师启发、点拨学生依然从转化的思想入手,将圆转化为已学过的图形进行计算,然后通过等量代换得到圆面积公式。因此,新课内容必须从贴近学生生活的情境出发,激发学生的探究欲望,降低内容的抽象性,引导学生用转化的方法推导出圆面积的计算公式。
本节课,我认为我主要有以下几个亮点:
一、重视自主探究,发挥学生主体性。
在教学“圆的面积”计算公式推导时,我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时间和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自己的推导想法,师生共同倾听并判断学生汇报圆的面积公式的推导过程,有效地体验从猜想——实践验证——分析——归纳总结的科学探究问题的方法。看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践能力和创新意识。例如:想一想以前咱们学过了哪些图形的面积计算公式?(长方形、正方形、平行四边形、三角形、梯形)这些面积公式都是怎样推导出来的?(生边回答课件边演示平行四边形、三角形、梯形的面积公式推导过程)从这些面积公式推导过程中你得到了什么启发?(都先转化成长方形,可否将圆也转化成长方形呢?)怎么转化?(生讨论,看书等后回答:把圆分成若干等份,拼成长方形),你想分成多少等份?(16等份)多点行不行?(众说不一,同桌讨论后回答:行)为什么呢?(分的等份越多,拼成的图形就越接近长方形)如果越少呢?(拼成的图形就越不象长方形)如果分成两等份呢?(用两个半圆试拼)(那就拼不成长方形了)现在我们将这个圆分成16等份,请两个同学上台拼一拼,大家首先看圆周围的黑线表示圆的什么?(周长)这条红线呢?(半径)这两条线很顽皮,在拼的过程中要跟我们玩捉迷藏,一定要盯住它们各藏到哪儿了?(学生操作)他们先把两个半圆展开,然后犬牙交错地拼在一起,成了什么图形啦?(长方形)是精确的长方形吗?(不是,是近似的)为什么?(上下两条长边上有许多小包包)对,两条长边不是直的,是波浪形的,怎样才能使它接近一条直线呢?(把圆分的等份越多,就越接近直线)好,现在我们就将圆分成32等份拼一下,为了便于观察,我们用课件来演示。同样用黑线表示周长,红线表示半径。也学这两位同学这样拼起来,成了一个什么图形?(几乎是一个长方形了)这样一拼之后,什么变了?什么没变?(形状变了,面积没变)现在大家找一找,黑线和红线各藏到哪里去了?(黑线分成了两段,到了长方形的上下两边,红线到了长方形的右边)各成了长方形的什么呀?(表示圆周长的一半成了长方形的长,表示半径的红线成了长方形的宽)(老师对应地板书)长方形的面积等于长乘以宽,那么圆的面积等于什么呀?(学生互相合作,推导出圆面积公式)(老师对应板书并熟读公式)好,现在大家用学具拼一拼,看还能拼出什么学过的图形?(可以拼出近似三角形、平行四边形、梯形)真不错,拼成的这些图形同样可以推导出圆面积的计算公式,这个问题我们留到数学活动课再去进一步探讨。
二、运用多媒体手段,激发学生学习兴趣。
在学生实践操作的基础上,我利用多媒体精确演示圆割补拼图的过程,让学生清楚地理解自己推导方法的科学性和准确性,极大地激发了学生们的学习兴趣,为学生今后圆锥,圆柱奠定了有力的基础。
三、练习坡度适当,由浅入深地掌握知识。
课上及时安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。
课后设想:
圆除了剪拼成近似的长方形外,还可以转化成近似的三角形、近似的梯形。如果让学生在这里再动手操作,对学生思维的拓展是有很大的好处,但一节课无法容纳这么多的内容,所以这一节课就选择了单纯让学生把圆转化成近似长方形来推导圆面积的公式。但回头想想,也可以把圆的面积分两课时来上,一课时是让学生操作,圆可以转化成什么图形?第二课时才深入地研究如何推导圆面积的公式,这样费时多些但对学生的能力开拓会更有好处。
圆是小学阶段学习的最后一个平面图形,学生认识直线图形到曲线图形,不论是学习资料的本身还是研究问题的方法。都有所变化,是学习上的一次飞跃。
透过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,透过对圆有关知识的学习,不仅仅加深学生对周围事物的理解,激发学生的学习数学的兴趣,也为以后学习圆柱、圆锥打下基础。
一、感受圆的周长与面积的不一样,明确概念
本课开始,我先让学生比较圆的周长与圆的面积有什么不一样,之后结合会议平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、学具与多媒体辅助教学,激发探究
透过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。此刻回想起来,我不应该一上来就问如何计算圆的面积,而应先让学生猜测圆的面积可能与什么有关,当学生猜测出来圆的面积可能与圆的`半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自己手中的小圆分成若干个小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,后来让学生观看多媒体演示分成64等份、128等份,让学生体会从一个不规则图形到近似的一个长方形的过程。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自我制作的学具操作起来很不方便,既耽误时间,又不规范,如果能统一配置学具会更利于操作。)
三、分层练习
结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不一样的层次对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,简单的解决问题。在每一道练习题的设置上,都有不一样的目的性。但在练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与解决问题的过程中来。今后教学中应关注学生对的参与程度,知识的掌握程度,促使学生主动发展,提高课堂教学效果。
数学来源于生活有服务于生活,能够应用宋学只是解决生活实际问题这是学习数学的最终目的。在本节课,都让学生真切地感受到数学就在我们身边,数学与生活是密切相关的,用所学知识解决生活中的实际问题是一件很有成就的事,从而树立学好数学的信心。