作为一名人民教师,我们要有一流的教学能力,教学反思能很好的记录下我们的课堂经验,那么应当如何写教学反思呢?这里是小编帮大家分享的因数和倍数教学反思【精选8篇】,欢迎借鉴,希望对大家有所帮助。
本单元涉及到的因数、倍数、质数、合数以及第四单元中出现的最大公因数、最小公倍数都属于初等数论的基本内容。是学生通过四年多数学学习,已经掌握了大量的整数知识,包括整数的认识、整数四则运算的基础上进一步探索整数的性质。
在教学中,通过教授学生认识“因数和倍数”,并掌握他们的特征:因数和倍数不能单独存在,并通过观察比较几个数的因数(或倍数),知道几个数公有的因数(或倍数)叫做他们的公因数(或公倍数),且能够在几个数的因数(或倍数还)中找出他们的公因数(或公倍数)。
接下来学习“2、3、5的倍数的特征”。发现2、5、3倍数的规律和特点。在此之前还要向学生教学什么是“奇数”什么是“偶数”,只有掌握了奇数与偶数,学习“2、5的倍数”的特征就会简单容易得多。而“3的倍数”的特征就是引导学生把各个数位上的数相加,的到的数如果是3的倍数的话,说明这个数就是3的倍数。
那么,又如何让学生学习掌握质数与合数呢?在教学中,我主要是让学生把1~
20的因数分别写出来,并按照奇数为一列偶数为一列来让学生进行观察比较,然后归类整理:只有1个因数的有哪些数?有两个因数的有哪些数?有3个以上因数的有哪些数?学生分好之后,教师明确:向这样只有2个因数的数叫做质数,有2个以上因数个数的数叫合数,1既不是质数也不是合数。那么自然数按因数的个数来分就可以分为“1、质数、合数”三大类。
为了让学生巩固质数与合数,再让学生找出1~100以内的所有质数:先划掉除了2以外所有2的倍数,再划掉3的'倍数、划掉5的倍数、最后划掉7的倍数,所剩下的数就是质数,并且让学生数出、记住100以内有25个质数。也可以用同样的方法去判定100以外的数是质数还是合数。
最后,再学生讲解介绍“分解质因数”,知道用短除法来分解质因数。然后对整个单元所学的知识进行梳理、归类,让学生熟记一些特殊的规律与数字,多做一些练习,加强的后进生的关注和辅导。
反思教学效果总结了的原因有以下几点:
(一)素数和合数的判断不熟练。一些数如:49、51、91这些数看上去是素数,但其实是合数。这些数经常被学生误认为是素数而导致错误,原因是这些学生就简单的看看,而不愿意用2、3、5等素数去尝试,努力寻找是不是有第3个因数存在。
(二)意思相同,但语句表述不同时,有的学生就不能正确理解。如:在上面的数只有两个因数的数有哪些?其实这道题目就是问在上面的数中素数有哪些。
(三)有的学生缺少分析理解,研究和判断的能力,判断和选择题的错误比较多。例如:1的倍数肯定是奇数。如果一个学生先找到1的倍数,然后根据数的特点作出正确的判断。但有的学生看到1是个奇数,然后就简单地做出它的倍数也是奇数想法。例如:一个数的倍数一定比它的因数大。如果学生找一个数,看看它的最小倍数是哪个?找找它的最大因数是哪个?这样不难找到正确的答案。但是有的倍数简单地被题目的意思误导,加上平时的练习中还有倍数一般都是大的,因数一般都是小的概念,学生容易误判。
教学中,我和学生有时太满足于平时练习的结果,而缺少让学生进行数学思考和表达能力的过程训练。看来在以后的教学中,我要继续改变教学观念,要高度尊重学生,依靠学生,把以往教学中主要依靠教师转变为依靠学生。
建议
1、在新知教学中,注重引导学生进行探究。在本单元中找一个数的倍数和因数,都有比较好的方法。如何通过学生的探究找到方法,成了教学的亮点。如“找36的因数” ,找一个数的因数是本课的难点。应该说,找出36的几个因数并不难,难就难在找出36的。所有因数。教学中,建议教师不要把方法简单地告诉学生,而是让学生独立去探究,独立写出36的所有因数,在学生反馈的基础上教师再引导学生对有序和无序作比较,学生才能在比较、交流中感悟有序思考的必要性和科学性。交流的过程正是学生相互补充、相互接纳的过程,是对学习内容进行深加工和重组知识的过程,是学生的认知不断走向深入,思维水平不断提升的过程。这是新知探究阶段的思维交流。既是不断深化理解因数与倍数知识的过程,又是培养学生良好思维品质的过程。给学生独立思考的空间,提出了各自的解法或见解,是思维独创性的培养;引导学生一对一对有序的找,或从1开始,用除法一个个去试,是思维条理性的培养;既有迁移于摆方块的形象思维,又有直接运用除法算式的抽象思维,或乘除法口诀的综合运用等,在感受解法多样性中,培养了学生思维的灵活性。
2、寓教于乐,游戏中进行相应的巩固练习。本节课是一节概念课,内容比较枯燥,课本上的练习形式也比较单一,所以在认识倍数和因数后,应安排有趣味的游戏,比如数字转盘游戏,让学生看转盘说指针停止时,内圈的数与外圈的数的关系,进一步认识倍数和因数,又能从中发现倍数和因数的相互依存的关系。在学会找倍数和因数之后也可设计游戏,如:“猜猜一位老师的电话号码”,在一个八位数的号码中已知其中四位,根据有关倍因数关系的问题请学生找出未知的四位号码,以提高学生学习的积极性,稍有难度的练习给学有余力的学生一个证明自己能力的机会,让学生在数学活动中体验到数学学习的趣味性和挑战性,学生运用所学知识解决问题,体会到了学习新知识后的成就感。
3、教师要注重评价的导向作用,让学生在评价中成长。在第一课时学生交流12的因数时,教师展示了三位同学的作业:第一种是无序的,第二种是从小到大有序的,第三种是一对一对有序的。接着老师让第一种方法的学生说说自己的想法,并让其他同学评论,此时大多数学生的评价都认为不好,找得缺漏、无序,这时其实作为老师是否可以问问这种答案“有没有值得肯定的地方?”,毕竟找到的这些答案都是正确地,然后再去寻找更好的方法。如果老师能经常注意这样引导评价,学生自然而然地意识到要先看别人的优点,再看别人的缺点,也给了刚才那位学生一个心理上的安慰,使他能更积极地投入到学习当中去。
1、在导入的过程中,创设有效的数学学习情境,激发了学生的学习兴趣。让学生通过观察教材上的除法算式,采用小组合作的方式进行自主探究,把所给的算式按照特点进行分类,激活了学生的形象思维,为下面研究因数与倍数的概念,打下了良好基础,有效地实现了原有知识与新知识之间的链接。
2、在学生已有的知识基础上直观感知,让学生自主体验发现知识的过程,进而理解了因数和倍数的意义,使学生初步建立了“因数和倍数”的概念。这样,利用学生已有的数学知识引出了新知识,减缓难度,效果较好。
3、放手让学生自己去探索寻找一个数的因数或倍数的方法。由于个人经验和思维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知识的资源,在比较不同的答案中归纳出求一个数的因数的倍数的方法。既留足了自主探究的空间,又在方法上有所引导,避免了学生的盲目猜测。
教学中我发现倍数和因数这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,在此基础上认识因数倍数。而这里的处理的方法有所不同,我在教学时做了一些改动,让学生用12个小正方形摆长方形,然后自己用算式把摆法表示出来。这样学生的算是就不局限于乘法,有一部分学生写了除法算式。这样学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。因为现在也有很多学生学习奥赛,所以我从整除的角度也介绍了因数与倍数的概念.由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动的接受。如让学生思考:你觉得3和12、4和12之间有什么关系呢?(对乘除法学生有着相当丰富的经验,因此不少学生能说出倍数关系,可能说得不很到位,但那是学生自己的。东西)。当学生认识了倍数之后,我进行了设问:12是3的倍数,那反过来3和12是什么关系呢?尽管学生无法回答,但却给了他思考和接受“因数”的空间,使学生体会到12是3的倍数,反过来3就是12的因数,接下来4和12的关系,学生都争者要回答。
如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下五分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这不老师给予有有效得多。
《倍数和因数》是四下第九单元的内容。教学时,我首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出倍数和因数的意义。这样在学生已有的知识基础上,从动手操作到直观感知,让学生自主体验数与形的结合,进而形成倍数与因数的意义,使学生初步建立了“倍数与因数”的概念。根据算式直接说明谁是谁的倍数,谁是谁的因数,学生很容易接受,再通过学生自己举例和交流,进一步加深对倍数和因数意义的理解。从学生的反应和课堂气氛来看,教学效果还是不错的。
能不重复、不遗漏、有序地找出一个数的倍数和因数,是本课的教学难点。教学时,我先让学生自己找3的倍数,汇报交流后通过对比(一种是没有顺序,一种是有序的)得出如何有序地找一个数的倍数的方法。对于倍数,学生在以前的学习中已有所接触,所以学生很容易学,用的`时间也比较少。
对于找一个数的因数,学生最容易犯的错误就是漏找,即找不全。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。这样的板书帮助学生有序的思考,形成明晰的解题思路。学生通过观察,发现当找到的两个自然数非常接近时,就不需要再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点。
一、教材与知识点的对比与区别。
1、对比新版教材知识设置与传统教材的区别。
有关数论的这部分知识是传统教学内容,但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分,还是从微观方面——具体内容的设计上都独具匠心。“因数与倍数”的认识与原教材有以下两方面的区别:
(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。
(2)“约数”一词被“因数”所取代。
这样的变化原因何在?教师必须要认真研读教材,深入了解编者意图,才能够正确、灵活驾驭教材。因此,我通过学习教参了解到以下信息:
学生的原有知识基础是在已经能够区分整除与余数除法,对整除的含义有比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本教材中删去了“整除”的数学化定义。
2、相似概念的对比。
(1)彼“因数”非此“因数”。
在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数。而后者是相对于“倍数”而言的,与以前所说的“约数”同义,说“X是X的因数”时,两者都只能是整数。
(2)“倍数”与“倍”的区别。
“倍”的概念比“倍数”要广。我们可以说“1.5是0.3的5倍”,但不能说”1.5是0.3的倍数”。我们在求一个数的倍数时,运用的方法与“求一个数的几倍是多少”是相同的,只是这里的“几倍”都是指整数倍。
二、教法的运用实践
1、“因数与倍数”概念的数的应用范围的规定直接运用讲述法。对与本知识点的概念是人为规定的一个范围,因此,对于学生和第一接触的印象是没有什么可以探究和探索的要求,而且给学生一个直观的感受。“因数与倍数”的运用范围就是在非0自然数的范畴之内,与小数无关,与分数无关,与负数无关(虽没学,但有小部分学生了解)。同时强调——非0——因为0乘任何数得0,0除以任何数得0。研究它的因数与倍数是没有意义。我得到的经验就是对于数学当中规定性的概念用直接讲述法,让学生清晰明确。因此,用直接导入法,先复习自然数的概念,再写出乘法算式3x4=12,说明在这个算式中,3和4是12的因数,12是3和4的倍数。
2、在进行延续性教学中,可以让学生探究怎么样找一个数的因数和倍数,在板书要讲究一个格式与对称性,这样在对学生发现倍数与因数个数的有限与无限的对比,再就是发现一个数的因数的最小因数是1,最大因数是它本身。一个数的倍数的最小的倍数是它本身,而没有最大的倍数。这些都是上课时应该要注意的细节,这对于学生良好的学习惯的培养也是很重要的。
《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基础上再引出因数和倍数的概念。而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。我觉得这局部内容同学初次接触,对于同学来说是比较难掌握的内容。尤其对因数和倍数和是一对相互依存的概念,不能单独存在,不是很好理解。我通过捕获生活与数学之间的联系,协助同学理解因数倍数相互依存的关系。所以在上课之前我特意和小朋友们玩了一个小游戏。用“ 我和谁是好朋友”这句话来理解相互依存的意思。即“我是谁的好朋友”,“谁是我的好朋友”,而不能说“我是好朋友”。同学对相互依存理解了,在描述因数和倍数的概念时就不会说错了。对于这节课的教学,我特别注意下面几个细节来协助同学理解因数和倍数的概念。
一是教材虽然不是从过去的整除定义动身,而是通过一个乘法算式来引出因数和倍数的概念,但实质上任是以“整除”为基础。所以我上课时特别注意让同学明白什么情况下才干讨论因数和倍数的概念。我举了一些反例加以说明。
二是要同学注意区分乘法算式中的“因数”和本单元中的“因数”的联系和区别。在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数,而后者是相对于“倍数”而言的,两者都只能是整数。三是要注意区分“倍数”与前面学过的“倍”的联系与区别。“倍”的概念比“倍数”要广。可以说“15是3的5倍”,也可以说“1.5是0.3的5倍”,但我们只能说“15是3的倍数”,却不能说“1.5是0.3的倍数”。我在课堂上反复强调,协助小朋友们认真理解辨析,所以同学一节课下来对这组概念就理解透彻了,不会模糊了。
北师大版五年级数学上、第三单元第一节《倍数与因数》是一节概念课。关于“倍数和因数”教材中没有写出具体的数学好处,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。通过备课,我梳理出这样一个教学脉络:乘法算式——倍数和因数——乘法算式——找一个数的倍数。从教材本身来看,这部分知识对于五年级学生而言,没有什么生活经验,也谈不上有什么新兴趣,是一节数学味很浓的概念课。如何借助教材这一载体,让学生在互动、探究中掌握相应的知识,让乏味变成有味呢?我从以下两个方面谈一点教学体会。
一、设疑迁移,点燃学习的火花。
良好的开头是成功的一半。我采用一道脑筋急转弯题作为谈话引入课题,不仅仅能够调动学生的学习兴趣,看似不相关的两件事例中隐藏着共同点:一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。
教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找2的倍数、5的倍数,学生发现2的倍数、5的倍数写不完时,通过讨论,认为用省略号表示比较恰当,用语文中的'一个标点符号解决了数学问题,自我发现问题自我解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。
二、渗透学法,构成学习的技能。
由于一个数倍数的个数是无限的,那么如何让学生体会“无限”、又如何有序写出来呢?我让学生尝试说出3的倍数。学生找倍数的方法有:依次加3、依次乘1、2、3……、用乘法口诀等等。我组织学生展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,能够很快地找到第几个倍数是多少,因为简捷正确率高所以觉得好。如此的交流虽然花费了“宝贵”的学习时光,但是学生从中能体会到学习的方法,发展了思维,这才是最宝贵的。正所谓没有一路上的山花烂漫,哪有山顶上的风光无限。
三、学练结合,及时把握学生学情。
在学生通过具体例子初步认识了倍数和因数以后,通过超多的练习让学生在练习中感悟,练习中加深理解概念;在探究出找倍数的方法以后,及时让学生写出2的倍数、5的倍数,从而引导学生发现一个数的倍数的特点,并适时进行针对性练习,巩固新知。
课尾,我设计了四道达标检测练习,将整堂课的资料进行整理和概括,对易混淆的概念加以比较,对本节课重要知识点进行检测,及时掌握了学生的学情。
纵观整节课,学生在学习过程中自始至终处于主体地位,尝试练习、自主探索、解决问题,教师只是加以引导,以合作者的身份参与其中。学生在思维上得到了训练,探究问题、寻求解决问题策略的潜力也会逐步得到提高。