“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。下面是小编辛苦为大家带来的三角形的内角和教学反思(优秀5篇),希望能够帮助到大家。
整节课通过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体现在以下几个方面:
1、精心设计学习活动,让每一个学生经历知识形成的过程。
为学生提供了丰富的结构化的学习材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作能力、推理归纳能力,实现学生对知识的主动建构。
2、立足长远,注重长效,不仅关注知识和能力目标的落实,更注重数学思想方法的渗透。
在验证三角形内角和是180度的过程中,有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习态度和探究精神。
3、遵循教材,不唯教材。
本节课上,延伸了教材,拓宽了学生的知识面,把学生的学习置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生积极向上的学习情感。
4、不足之处:
学生在折纸验证三角形的内角和后汇报时,学生的表达不够清楚,老师的引导不能及时跟进。再次教学中,要充分发挥学生的主体作用,适时地引导好学生思考,注重学生的实际操作,同时培养学生的语言表达能力。
《三角形的内角和》是人教版四年级下册第五单元的内容,是学生学习了三角形的特性及分类的基础上学习的。本节课我主要设计了四个环节,提出问题→合作探究→学以致用→分享收获。
第一个环节中,我先设计了一个情境,三角形三兄弟(锐角三角形、钝角三角形、直角三角形)争论谁的内角和大,一下子激起了学生的探究兴趣,这个时候就有学生说一样大,此时引出课题,同时学生提出问题:什么是内角?三角形的内角和是多少度?
第二个环节是合作探究三角形的内角和,这个环节里学生小组合作,通过量、撕、折等方法,验证三角形的内角和是180。
第三个环节是学以致用,我设计了三个闯关游戏,第一关是已知两个角的度数求第三个角的度数,第二关是等边三角形、等腰三角形和直角三角形一个角的度数,第三关是两个相同的三角形组成一个大三角形后,大三角形的内角和是多少度。
反思师生互动的过程,本节课的优点有:
1、本节课中学生探究欲很高,课堂研讨气氛浓厚。
2、小组合作中,学生们发现测量时,三角形的内角和不一定是180,培养了学生事实求是的科学态度,此时学生能运用转化思想解决问题,从而提升了学生解决问题的能力。
3、量、撕、折的动手实践活动,不仅提高了学生的动手操作能力,而且让在动手的同时动脑、动口,积极参与知识学习的全过程,鼓励学生多观察、动脑想、大胆猜、勤钻研,增强了学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
4、课堂练习题的设计层层递进,以及实践活动的设计,让学生体验了学以致用的快乐,获得成功的喜悦。
5、学生在分享收获中,各抒己见,提升了自己的表达能力和归纳能力。
本节课需要改进的地方:
1、在合作探究环节,我提出问题:怎样来验证三角形的内角和?此时学生提出了测量的方法之后,我没有给学生留有足够的思考空间,而是直接介绍了“撕、折”的方法,让孩子们进行探究,课堂中缺少了更多的生成。
2、课堂中设计了实践活动环节,学生们非常感兴趣,但是由于时间不充足,有些学生理解的不够充分,这个环节学生的参与度不够,考虑可以放到课后思考。
三角形的内角和一课,知识与技能目标并不难,但我认为本节课更重要的,是通过自主探究与合作交流,使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时,在不同方法的交流中,开拓思维、提升能力。基于以上里面,本节课,我也准备引导学生采用自主探究、动手实践、猜想验证、合作交流的学习方法,并在教学过程中谈话激疑,引导探究;组织讨论,适时启发帮助。使教法和学法和谐统一在“以学生的发展为本”这一教育目标之中。
由于是借班上课,学生对于三角形了解的内容还不够多,所以我才用了直接导入的形式来进入新课,让学生自己探讨什么是三角形的内角,三角形有几个内角,三角形的内角和又是多少呢?来揭示内角和内角和的概念,学生明确了内角与内角和的概念,然后让学生大胆的猜测,三角形的内角和是多少,有的同学猜测是100度、90度、200度,但猜测不等于结论,在这里我追问大家猜测的依据是什么?同学们并没有说出来,于是我引导大家怎样才能知道他们的内角和是多少呢,同学们想到了测量每个内角是多少,然后再求和。我又追问:怎样才能知道每个内角是多少呢?于是同学们想到了量一量,这时让同学们动手进行测量记录数据,但由于学生动手操作前教师没有对操作步骤进行要求,导致同学们在测量时分不清测量的是哪一个角,我及时引导大家把每个内角都标上序号,在进行测量,分别把他们测量的数据填写的报告单当中,因为这样导致了同学们测量的速度较慢,最终由于时间关系钝角三角形的内角和学生操作完成,在展示成果时没有进行展示,同学们只得到了钝锐角、直角三角形的内角和是接近180度的。如果我能再给学生一点点时间,学生就可以完成了,以后教学中还是应该多多放手,给学生留有先足的动手空间和时间。
我认为数学课不仅是解决数学问题,更重要的是思维方式的点拔,使数学思想的种子播种在学生的头脑中。由于在量一量、算一算的环节中,学生初验证了三角形的内角和接近180度的,于是引导学生由180度想到平角,让学生探讨交流:怎样才能把一个三角形的三个内角转化平角。撕拼这一环节过程主要向学生展示渗透转化的数学思想的教学目标。
四年级学生在以往的数学学习过程中都积累了不少转化的体验,但在这种体验基本上处于无意识状态,只有合理呈现学习素材,才能使学生对转换策略形成清晰的认识。操作之初,一部分学生没有明确操作目的,把三个不同的三角形的角拼在了一起,我在巡视的过程中发现了这一现象后,让学生再次谈操作要求,明确操作目标,之后引导学生如何把三个角从三角形分离出来,从而部分学生想到了撕拼法,一部分学生想到了折拼法,于是我请撕拼法的你同学上台展示后,再让用折拼法的同学展示他们的方法,并给予肯定和评价,至此教学目标基本完成,学生明确知道了:三角形的内角和为180度。为了让学生更深刻的理解这一结论,我设计了一变二,和二变一的图形展示,使学生明确了所有三角形的内角和都是180度,与形状大小无关,如果时间充裕的话我想让学生探一下,增加和减少的度数源于哪里。
数学规律的形成与深化,不仅靠感知,还要辅以灵活、有趣、有层次的课堂训练,已达到练习的有效性。对此,我设计了有层次的练习,但由于时间只有了30分钟,这一部分没有来得急提供给学生,可以说是这节课的遗憾之一。
总之,本节课力图学生通过自主探究、合作交流,让学生充分经历知识的形成过程,让学生学会数学、会学数学、爱学数学。在教学过程中,随时会生成一些新的教育资源,课堂的生成大于课前的预设,如何有效的利用生成、有效的进行评价,是我该思考的问题,也是我今后课堂的努力方向。
“合作探究,实验论证”生动地诠释了新教育的基本理念,本课新知识传授很好的把握三个环节。
一是学生独立思考,教师引导学生讨论验证方法,掌握要领。上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角的和是多少?初步让学生感知直角三角形的内角和是180,然后质疑:,这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180°呢?这个问题一提出去就激发学生的探究学习的热情。因此接着就让学生讨论:有什么办法可以验证得出这样的结论。学生提出度量、折一折、拼一拼等方法。
二是动手操作验证猜想。让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法或者用折一折的方法或者拼一拼的方法等等,通过小组合作交流,印证猜想,得出任意三角形的内角和是180°的结论。
三是进行总结强化了学生对结论的理解与记忆,激发学生探索知识的热情。科学验证了结果,让学生用简洁的语言总结结论:三角形的内角和是180°。
《三角形的内角和》是九年制义务教育人教版四年级下册第五章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一些活动得出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、猜测、实验,总结。逐步培养学生的逻辑推理能力。
“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。
本课的重点就是要让学生知道“知其然还要知其所以然”,所以在第二环节里。鼓励学生亲自动手操作验证猜想。为此,我设计了大量的操作活动:画一画、量一量、剪一剪、折一折、拼一拼、撕一撕等,我没有限定了具体的操作环节,但为了节省时间,让学生分组活动,感觉更利于我的目标落实。但在分组活动中,我更注意解决学生活动中遇到了问题的解决,比如说画,老师走入学生中指导要领,因此学生交上来画的作品也非常的漂亮。学生观察能力得到了培养。再比如说折,有的学生就是折不好,因为那第一折有一定的难度,它不仅要顶点和边的重合,其实还要折痕和边的平行,这个认识并不是每个学生都能达到的。教师也要走上前去点拨一下。再比如撕,如果事先没有标好具体的角,撕后就找不到要拼的角了……所以在限定的操作活动中,既体现了老师的“扶”又体现了老师的“放”。做到了“扶”而不死,“伴”而有度,“放”而不乱。我还制作了动画课件,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。在此环节增加了学生的合作探究精神培养。
在归纳总结环节,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力。
最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,我除了设计了一些基本的已知三角形二个内角求第三个角的练习题外,还设计了几道习题,第一道是已知一个三角形有二个锐角,你能判断出是什么三角形吗?通过这一问题的思考,使学生明白,任意三角形都有二个锐角,因此直角三角形的定义是有一个角是直角的三角形叫直角三角形;钝角三角形的定义是有一个钝角的三角形叫钝角三角形;而锐角三角形则必须是三个角都是锐角的三角形才是锐角三角形的道理。
这道题有助于帮助学生解决三角形按角分的定义的理解。第二道题是一个三角形最大角是60°,它是什么三角形?通过对此题的研究,使学生发现判断是什么三角形主要看最大角的大小,如果最大角是锐角,也可以判断是锐角三角形。
同时加深了学生对等边三角形的特点的认识和理解。第三题我拓展延伸到三角形外角,第四题我设计了多边形的内角和的探究。
我在讲“三角形的内角和”时,开始就由求两个我们已经熟悉的直角三角尺的内角和入手。在学生的认知结构中,他们已经知道了两块三角尺的内角和是180°了。在此基础上,引导学生猜测,其他三角形的内角和是不是也是180°。这也正是我本节课要与学生共同研究的问题。这时学生想说为什么又不知怎么说,又因不知道怎么说而感情特别激动。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我让他们将课前准备好的三角形拿出来进行研究,体现学生的主体意识与参与意识。当学生通过量一量、折一折、撕一撕之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。有的学生将三角形的三个角都撕下来拼接到一起,有的同学将三角形的三个角沿着三角形的中位线折到一起……
但试想一下,如果我上课之初,就告诉孩子三角形的内角和为180°,并且告诉孩子我的验证方法,即便告诉的方法再多,再详细,他们学到的也只是我的有限的方法,而且是老师的方法,不是自己发现的方法。
不过在进行动手操作的时候,有些小组没有抓到很好的要领,而我也没给予及时的指导;或者说,因为时间的关系,我的指导没有很好的说清楚,导致个别小组动手的时候不是很清楚。
对于活动性课程,我的把握不是很到位。在活动中出现的小问题,有的时候我经 ww w. 常会不知所措,不知道应该怎样及时解决,这个是我今后要努力的方向。