《解比例》教案(精选3篇)

作为一名教师,时常会需要准备好教案,编写教案助于积累教学经验,不断提高教学质量。那么大家知道正规的教案是怎么写的吗?这里是美丽的小编给大家整理的《解比例》教案(精选3篇),希望大家能够喜欢。

《解比例》教案 篇1

教学内容:课本第69页例2、3;练一练;《作业本》第31页。

教学目标:理解解比例的意义,掌握解比例的方法,能正确地解比例。

教学重点:解比例的基本方法与依据。

教学难点:解比例的方法

教学过程:

一、复习:

1、什么叫比例?

2、什么是比例的基本性质?

3、怎样检查两个比是否成比例?

二、新授:

1、先请学生心里想好一个比例(数目简单些),如2:3=4:6,只告诉其他同学其中的三项,让大家猜一猜还有一个数字是什么?

2、根据比例的基本性质,如已知比例中的任何三项,就可以求出另一个未知项。

3、求比例中的未知项,叫做解比例。

4、例2解比例:

30∶12=45∶χ

解:30χ=12×45…………根据是什么?

χ=………不先求积,先约分比较简便。

χ=18

5、例3解比例=

①请学生独立尝试;

②注意格式;

③反馈练习。

6、试一试。

三、巩固练习:

1、解比例:(练一练第1题第一竖行)

2、练一练第2题

3、补充:χ∶0.8=3∶1.2

四、小结:

这节课学习了什么?

五、《作业本》第31页。

小学六年级数学教案——用比例知识解答应用题教案

教学目的

1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.

2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.

3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.

教学重点

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

教学难点

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

教学过程

一、复习准备.

下面每题中的两种量成什么比例关系?

(1)速度一定,路程和时间.

(2)总价一定,每件物品的价格和所买的数量.

(3)小朋友的年龄与身高.

(4)正方体每一个面的面积和正方体的表面积.

(5)被减数一定,减数和差.

谈话引入:我们今天运用正反比例的知识来解决实际问题.

(板书:用比例知识解应用题)

二、探讨新知.

(一)教学例5(用比例解答下题)

修一条公路,总长12千米,开工3天修了1.5千米.照这样计算,修完这条路还要多少天?

1.学生读题,独立解答.

2.学生反馈:

3.分析:

(1)为什么需要用正比例解答?

(2)12和要求的天数之间有什么关系?

4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系.

(二)反馈.

1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米.照这样计算,行完全程需要多少小时?

2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?

三、巩固反馈.

1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?

2.某车间有男工25人,女工20人.如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?

3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?

4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的.第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?

四、课堂总结.

通过这堂课的学习,你有什么收获?

小学六年级数学教案——正比例和反比例的比较

学目标

1.进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律.

2.使学生能正确判断正、反比例.

教学重点

正、反比例的联系和区别.

教学难点

能正确判断正、反比例.

教学过程

一、复习准备

判断下面每题中两种量成正比例还是成反比例.

1.单价一定,数量和总价.

2.路程一定,速度和时间.

3.正方形的边长和它的面积.

4.时间一定,工效和工作总量.

二、新授教学

(一)出示课题

教师明确:我们已经初步学习了判断两种量是不是成正比例或反比例的关系,这节课通过比较弄清它们有什么相同点和不同点.

小学六年级数学教案——比、比例和比例尺的概念的整理和复习

教学内容:教科书第35页的第l一3题,练习九的第l一3题。

教学目的:

1.使学生明确。比例”和“比”、“比值”等概念之间的联系和区别。,

2,使学生进一步提高对比例、正比例、反比例的意义和判断的理解和掌握,培养学生的分析问题和解决问题的能力。

3.加深对比例尺的认识,会求比例尺、图上距离和实际距离。

教具准备:投影仪、投影片、小黑板。

教学过程:

一、复习;;比”和“比例”

1.复习整理。

教师:这一单元我们学习了比例的知识,请同学们举例说一说什么叫做比?什么叫做比例?比和比例有什么区别?

随着学生的回答,教师板书如下表。

指出:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等,有四项:

2.练习。

用小黑板出示下面的题让学生完成。

(1)六年级一班有男生24人,女生20人。六年级一斑男生和女生人数的最简单的整数比是( )。

(2)六年级一班男生和女生人数的比是6:5。男生人数和全班人数的比是( ),女生人数和全班人数的比是( )。

(3)六年级一班男生和女生人数的比是6:5。男生有24入,女生有( )人。

二、复习解比例

1.完成第35页的第2题。

指名回答什么叫解比例,解比例要根据什么性质。

接着以 : =l :x为例,复习解比例的过程,使学生进一步明确:在解比例时,如果有带分数,要先把带分数化成假分数,然后利用比例的基本性质,把比例式变为含有未知数的等式来解。

然后让学生完成第2题的其余习题。

三、复习正比例、反比例

用投影片逐一出示下面问题,让学生回答。

1.什么叫成正比例的量和正比例关系?

2.什么叫成反比例的量和反比例关系?

3,正比例和反比例有什么联系和区别?

学生回答,教师填写小黑板上的表。

然后教师出示下面两个表,让学生根据表中两种量中相对应的数的关系,判断它们成什么比例,并说明理由。

使学生明确:要判断两个相关联的量是成正比例还是反比例,要看相对应的两个数的商或积是不是一定,如果积一定说明这两个量成反比例,如果商一定说明这两个量成正比例。如第二个表,通过计算,可以看出上、下两个相对应的数的商一定,也就是说,这个三角形的高的 一定,因而高也一定,所以三角形的面积与底边成正比 例。

四、课堂练习

完成练习九的第1—3题。

1.第1题.学生独立完成,集体订正。在订正第(4)小题时,可以先让学生说说12的约数有哪?然后说出自己用选出的四个约数组成的比例是什么。教师把学生说出的比慎写出来。订正第(6)小题时,要注意检查学生是否把图上距离和实际距离的单位续一了。

2,第2题,除第(2)、(7)小题教师要提示外,其余各题由学生自己判断,第(2)行驶的路程

小题,教师可以先说明 =周长,再让学生判断。第(7)小题,可以先让几个学生说说自己的体重和身高,教师把数据记下来,再让学生判断。使学生知道:人的体重和身高有一定的关系,一般人的体重是随着身高而增加的,但体重和身高不成正比例关系。

3.第3题,教师向学生说明:这题要求图上长方形的长、宽和地基的实际面积。

小学六年级数学教案——正比例和反比例的比较

教学目标

1.进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律.

2.使学生能正确判断正、反比例.

教学重点

正、反比例的联系和区别.

教学难点

能正确判断正、反比例.

教学过程

一、复习准备

判断下面每题中两种量成正比例还是成反比例.

1.单价一定,数量和总价.

2.路程一定,速度和时间.

3.正方形的边长和它的面积.

4.时间一定,工效和工作总量.

二、新授教学

(一)出示课题

教师明确:我们已经初步学习了判断两种量是不是成正比例或反比例的关系,这节课通过比较弄清它们有什么相同点和不同点.

(二)教学例7(课件演示:正反比例的比较)

小学六年级数学教案——解比例教案

教学目标

1.使学生理解解比例的意义.

2.使学生掌握解比例的方法,会解比例.

教学重点

使学生掌握解比例的方法,学会解比例.

教学难点

引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已

学过的含有未知数的等式.

教学过程

一、复习准备

(一)解下列简易方程,并口述过程.

2 =8×9

(二)什么叫做比例?什么叫做比例的基本性质?

(三)应用比例的基本性质,判断下面哪一组中的`两个比可以组成比例?

6∶10和9∶15 20∶5和4∶1 5∶1和6∶2

(四)根据比例的基本性质,将下列各比例改写成其他等式.

3∶8=15∶40

二、新授教学

(一)揭示解比例的意义.

1.将上述两题中的任意一项用 来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.

2.学生交流

根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.

3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.

(二)教学例2.

例2.解比例 3∶8=15∶

1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.

2.组织学生交流并明确.

(1)根据比例的基本性质,可以把比例改写为:3 =8×15.

(2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.

(3)规范并板书解比例的过程.

解:3=8×15

=40

(三)教学例3

例3.解比例

1.组织学生独立解答.

2.学生汇报

3.练习:解下面的比例.

= ∶ = ∶

三、全课小结

这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.

四、巩固练习

(一)解下面的比例.

1. 2. 3.

(二)根据下面的条件列出比例,并且解比例.

1.5和8的比等于40与 的比.

2. 和 的比等于 和 的比.

3.等号左端的比是1.5∶ ,等号右端比的前项和后项分别是3.6和4.8.

《解比例》教案 篇2

教学目标

1、通过自主尝试学会解比例的方法,进一步理解和掌握比例的基本性质。2、能运用解比例的方法解决实际问题。

【教学重点】掌握解比例的方法,学会解比例。

【教学难点】引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

教学重难点

【教学重点】掌握解比例的方法,学会解比例。

【教学难点】引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

教学过程

一、创设情境

上节课我们学习了一些比例的意义,谁能说一说

1、什么叫比例?

表示两个比相等的式子叫比例。

2、比例的基本性质是什么?

在比例里,两个外项的积等于两个内项的积。

3、应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

6︰10和9︰15

20︰5和4︰1

5︰1和6︰2

4、根据比例的基本性质,将下列各比例改写成其他等式。

3:8=15:403×40=8×15

9/1.6=4.5/0.89×0.8=1.6×4.5

5、这节课我们学习有关比例的应用的知识,即学习解比例。(板书课题)

二、引导探索,学习新知

1、自学:什么是解比例?请看书第35页

比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

课件出示:法国巴黎的埃菲尔铁搭高320米。它不仅是一座吸引游人观光的纪念塔,还是巴黎这座具有悠久历史的美丽城市的象征

2、自主学习例2。

法国巴黎的埃菲尔铁搭高320米。北京的“世界公园”里有一座埃菲尔铁搭的模型,模型的高度与原塔高度的比是1:10.这座模型的高度是多少米?

出示思考题:

思考:

(1)、埃菲尔铁搭模型的高与埃菲尔铁搭的高度的比是1:10。

也就是的高度:的高度=1:10

(2)、题中还告诉了我们什么条件?3、把这个条件换到这个关系式中就是::320=1:10这样在组成比例的四个项中我们知道其中的几个项?

还有几个项不知道?不知道的这个项我们把它叫做项。

小组内讨论解决问题,汇报:

(1)把未知项设为X。

(2)根据比例的意义列出比例:(X:320=1:10)

(3)指出这个比例的外项、内项,弄清知道哪三项,求哪一项。

(4)根据比例的基本性质可以把它变成什么形式?

(5)这变成了原来学过的什么?(方程。)

(6)让学生自己在练习本上计算完整。课件出示计算过程。

小结:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x,所以解比例也要写“解”字。

解比例的步骤是:

(1)、用比例的基本性质把比例改写成方程。

(2)、应用解方程的知识算出未知数。

3、教学例3。

出示例3:

思考:

(1)“这个比例与例2有什么不同?”(这个比例是分数形式。)

(2)这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?

讨论:

(1)解这种分数形式的比例时,要注意什么呢?

(2)在这个比例里,哪些是外项?哪些是内项?

学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6

让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的'。课件出示计算过程。

课件出示:做一做,独立完成后订正。

4、总结解比例的过程。

刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

三、巩固应用:

(一)、填空。

1、解比例x:12=2:24第一步24X=12×2是根据。

2、把0、3:1、2=0、2:0、8可改写成×=×

3、把4×5=10×2改写成比例是:=:

4、若甲:乙=3:5,甲=30,则乙=

5、在比例中,如果两个内项的积上36,其中一个外项是9,

另一个外项是

(二)、判断下列的说法是否正确。

1、含有未知数的比例也是方程。

2、求比例中的未知项叫解比例。

3、解比例的理论依据是比例的基本性质。

4、比就是比例,比例也是比。

(三)、根据题意,先写出比例,再解比例。

1、8与X的比等于4与32的比。

2、14与最小的质数的比等于21与X的比。

四、课堂总结:

今天你有什么收获?指生说收获。老师小结。

《解比例》教案 篇3

教学目的:

学会解比例的方法,进一步理解和掌握比例的基本性质。教学重点:解比例的方法。教学难点:解比例的方法。

教学过程:

(一)、复习铺垫:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识。让我们一起来学习解比例。板书课题:解比例什么叫做解比例呢?我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。

(二)、学习探索:你会用什么方法呢?(要根据比例的基本性质来解。)

1、教学例2。出示例2:解比例 3:8=15:X。根据比例的基本性质可以把它变成什么形式?教师板书:3X=815。问:这变成了什么?(方程。)这样解比例就变成解方程了。利用以前学过的解方程的方法就可以求出求知数x的值。因为解方程要写解:,所以解比例也应写解:(在3X前加上:解:)问:怎样解这个方程?教师适当补充(根据乘法各部分间的关系,把X看作一个因数,因为一个因数=积另一个因数,可以求出X。)和解题的技巧:板书;X= X=40从刚才解比例的过程。可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

2、教学例3。出示例3:解比例 = 提问:这个比例与例2有什么不同?(这个比例是分数形式:)这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?(能,根据比例的基本性质,把等号两端的分子和分母分别交叉相乘,就得出方程。)学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边。然后板书:4.5X=90.8问:这个方程你们会解吗?

3、总结解比例的过程。提问:刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

(三)系列训练:

1、做第3页做一做的第2题。

2、做练习一的第4、5题。

(1)做第4题的第(6)题时,要提醒学生先把带分数化成假分数再做。做完后,选二题让学生说说是怎样求解的。

(2)第5题。

3、学有余力的学生做第8*、9*题和思考题 傲第8*题的第(1)题。教师可以这样引导学生:比例的`基本性质是:在一个比例里。两个内项的积等于两个外项的积:现在这道题是知道两个积相等,如果我们把左边的两个数当作比例的外项,那么右边的两个数就应作为比例的内项。这样就能推出比例式了:如果把左边的两个数当作比例的内项。那么右边的两个数就应作为比例的外项。世可以推出比例式。写完后,教师板书出来。如果把3、40作为外项,有下面这些比例式:3:8=15:40 40:15=8:33:15=8:40 40:8=15:3如果把3、40作为内项,有下面这些比例式:15:3=40:8 8:40=3:1515:40=3:8 8:3=40:15

(四)布置作业:完成P5第6、7题。 板书设计:解 比 例例2:解比例3:8=15:X。 例3:解比例 = 解: 3X=815 解:4.5X=90.8X= X=1.6X=40

一键复制全文保存为WORD