圆的面积教案精选9篇

知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。这次帅气的小编为您整理了圆的面积教案精选9篇,您的肯定与分享是对小编最大的鼓励。

圆的面积教案 篇1

一、 教学目标

1.知识与技能:掌握圆环面积的计算方法,能灵活解决生活中相关的简单实际问题。

2.过程与方法:在经历画圆环、剪圆环的活动过程中,初步感受圆环的特点、形成过程,进而探索出圆环面积计算的方法。培养学生观察、动手操作、比较、分析、概括等能力。

3.情感态度与价值观:进一步体验图形与生活的联系,感受平面图形的学习价值,提高学习数学的兴趣。

二、教学重点

圆环的特征、圆环面积公式的推导及运用。

三、教学难点

灵活运用圆环面积的计算方法解决相关的简单实际问题。

四、教学具准备

课件、学具。

五、教学过程

(一)学习方法回顾、铺垫回忆一下

我们在推导圆面积计算公式时用到了什么学习方法?

(生:把圆形转化成学过的平面图形,利用旧知识推导出新知识。)

这节课我们继续用这种方法研究新问题。

(二)创设实际应用的问题情境

1.同学们你们喜欢看动画片吗?今天老师带来了几张光盘,看,这是什么?

(1)动画光盘

(2)歌曲光盘

(3)空白封面光盘

2.想知道这张光盘的内容吗?我们一起来看看。

欣赏学生的校园活动照片。

这些照片见证了我们同学6年来快乐的校园生活,非常珍贵。想不想把它珍藏起来?老师打算把这些照片刻成光盘,等你们毕业时当毕业礼物送给你们好吗?

3.现在这张光盘的封面还空着呢,你想不想亲自为它设计一个有纪念意义的封面呢?要进行设计,我们先了解一下哪部分是可以进行封面设计的。

4.小组内摸一摸准备的光盘实物,再让学生实投指一指。

师课件演示(由实物抽象出线条图形、涂色图形)【可使用圆动画14】

5.这个图形有什么特点?

生:由两个圆组成,它们的圆心是相同的。(课件点击出圆心)

6.师说明:这样两个同心圆所夹的部分我们把它叫做圆环。

板书课题:圆环

外面的圆我们叫它外圆,里面的小圆我们叫它内圆。两个圆周之间的距离我们叫做环宽。

圆的面积教案 篇2

教学目标:

1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

教学重点:

掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

教学难点:

应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

教学准备:

圆规,环形图片,教学情境图。

教学过程:

一、创设情境,引入新知

1.出示自然界中的一些环形图片。

(l)观察图片,说说这些图形都是由什么组成的。

(2)你能举出一些环形的实例吗?

2.引入:今天这节课我们就一起来研究环形面积的计算方法。

二、合作交流,探究新知

1.教学例11。

(1)出示例11题目,读题。

(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

(3)小组讨论,理清解题思路。

(4)集体交流

①求出外圆的面积。

②求出内圆的面积。

③计算圆环的面积。

(5)学生按步骤独立计算。

(6)组织交流解题方法,教师板书

①求出外圆的面积:3.14102 =314(平方厘米)

②求出内圆的面积:3.1462 =113.04(平方厘米)

③计算圆环的面积:314-113.04=200.96(平方厘米)

(7)提问:有更简便的计算方法吗?

圆的面积教学设计 篇3

一、复习旧知,导入新课

1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)

2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

3.件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

二、动手操作,探索新知

1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。

(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)

(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)

(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?那么同学们想一想,圆可能转化为什么平面图形来计算呢?

2. 推导圆面积的计算公式。

(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

(2)学生小组讨论。

看拼成的长方形与圆有什么联系?

学生汇报讨论结果。

(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

生边答师边演示课件。

生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

因为长方形的面积=长×宽

所以圆的面积=周长的一半×半径

S=πr × r S=πr2 师小结公式

S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

(5)读公式并理解记忆。

(6)要求圆的面积必须知道什么?(半径)

3. 利用公式计算。

(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

(2)出示例3,学生尝试练习,反馈评价。

提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

(3)完成第95页做一做的第1题。

(4)看书质疑。

三、运用新知,解决问题

1. 求下面各圆的面积,只列式不计算。(CAI课件出示)

2. 测量一个圆形实物的直径,计算它的周长及面积。

3. 课件演示

用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)

四、全课小结

这节课你自己运用了什么方法,学到了哪些知识?

五、布置作业

1. 第97页的第3题和第4题。

2. 找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

测量物、直径(厘米)、半径(厘米)、面积(平方厘米)

板书设计:

圆的面积

长方形的面积= 长× 宽

圆的面积=周长的一半×半径

S=πr×r

S=πr2

猜你感兴趣的:

圆的面积教案 篇4

【教学目标】

1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。

2.能够利用公式进行简单的面积计算。

3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

【教、学具准备】

1.CAI课件;

2.把圆8等分、16等分和32等分的硬纸板若干个;

3.剪刀若干把。

【教学过程】

一、尝试转化,推导公式

1.确定“转化”的策略。

师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

预设:

引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。

师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?

师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

2.尝试“转化”。

师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

请大家看屏幕(利用课件演示),老师先给大家一点提示。

圆面积计算说课稿通用 篇5

教学内容

人教版义务教育数学第十一册67——68页“圆面积公式的推导及面积公式的运用”。

教学目标

1、使学生理解圆的面积的意义。经历体验圆的面积公式的推导过程,理解和掌握圆的面积公式。

2、使学生能够正确地计算圆的面积,培养学生解决简单的实际问题的能力,渗透类比、转化、极限的思想。

3、通过圆的面积公式推导过程,培养学生的合作精神和创新意识,培养观察、猜想、验证的实验方法与态度。

教学重点

圆面积公式推导的过程。

教学难点

理解圆等分的份数越多拼成的图形越接近长方形。并且发现拼成的长方形的长相当于圆周长的一半。

教具、学具准备

圆面积的课件,自学案,探究案,彩色圆形纸片(每人1个)。

课前3分钟:由孩子主持,用《曹冲称象》的故事渗透“转化”思想。

教学过程

一、情境导入。

师:同学们,你们想知道老师准备了什么吗?

1、出示场景————《马儿的困惑》

师:马儿可以吃到多大范围内的草呢?闭上眼睛想一想,它吃草的范围是一个什么图形?(是一个圆形。)

师:那么,要想知道马儿吃草的范围的大小,就是求圆形的什么呢?

2、板书课题并理解。

师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)

师:看到这个课题后,你们会想到什么?(意义、公式、计算)

师:对!刚才这几位同学跟老师想的一样,老师整理了一下。

3、出示学习目标并理解。

(1)理解圆面积的意义。

(2)圆的面积公式是怎样推导出来的?

(3)掌握圆面积的计算方法。

师:同学们都明白这节课的目标了吧,那我们就带着这几个目标走进今天的课堂。

二、充分感知,理解圆的面积的意义。

师:什么叫圆的面积呢?请大家拿出圆形纸片,用你喜欢的方式感受一下圆的面积,告诉大家圆的面积指的是什么?(抽生答)

课件显示:圆所占平面的大小叫做圆的面积。

猜猜看圆面积的大小和什么有关系呢?(周长、直径、半径)

师:到底与什么有关系呢?下面我们就来认真研究研究。

三、自主探究,合作交流。

1、引导转化。

师:我们学过了哪些平面图形的面积?

平行四边形的面积公式是用什么方法推导出来的?梯形呢?三角形呢?(学生回答,教师演示课件)

预设:用平行四边形剪拼成长方形,用两个完全一样的梯形拼成平行四边形,用两个完全一样的三角形拼成平行四边形。

师:平行四边形、三角形、梯形面积公式的推导有什么共同点?

预设:用剪拼的方法转化成学过的图形。

师:用剪拼的方法转化成学过的图形,这是我们在学习数学的过程中常用的一种很好的方法————转化法。(板书:转化)

那么能不能把圆也转化成学过的平面图形来推导面积计算公式?

2、剪一剪、拼一拼、想一想。

自学案:自学教材67页内容,用红笔勾画出知识重点,并把教材119页上的圆剪一剪、拼一拼、想一想。

(1)我们把圆剪成了多少等份?每一小份是个什么图形?

(2)拼成了近似于以前学过的什么图形?拼成的图形跟原来的圆比较什么变了,什么没变?

(3)如果圆等分的份数越来越多,拼成的图形会接近什么图形?

师:课前孩子们进行了自学,都完成了吗?愿意把你的学习成果跟大家一起分享吗?请大家先在组内交流,然后以组为单位在全班分享。

自学分享:组内分享自学成果,抽二组(16等分、32等分)上台结合作品交流。

预设:为什么要分成偶数等分?

教师活动:学生自主活动时注意观察学情,交流展示时适时点拨评价,注意问题生成,目标的达成。

师:老师昨天在家也进行了自学,也想跟同学们分享分享,同意吗?但老师想请个解说员帮帮我,谁来试试。(教师边点课件学生边解说)

强调:如果圆等分的份数越多,每一份就会越小,长边就越接近直线,这个图形就越接近于长方形。

3、合作探究,推导公式。

师:拼成的近似的长方形与原来的圆到底存在着什么关系呢?(课件)请同学们结合图仔细观察、分析研究。

课件出示探究问题和提示。

探究问题:(1)拼成的近似的长方形的面积=原来()。

长方形的长近似于(),用字母()表示,

宽近似于(),用字母()表示。

(2)因为长方形的面积=()×(),

所以圆的面积=()×(),

用字母表示:()×()

S=()。

温馨提示:

1、结合所拼图形,观察、分析并独立完成探究问题,有困难的可以与对子同学合作完成。

2、组内同学完成后,组长快速组织交流,并安排好如何展示汇报。

展示交流:抽二组互动交流,学生在交流(1)时把字母表示标在图上,交流(2)时板书在黑板上。

预设:推导圆的面积公式还有其它方法吗?

学生活动:明确探究问题和提示,独立完成,合作探究,二组展示交流。

教师活动:学生活动时注意观察学情,交流展示时适时点拨评价,注意问题生成,目标的达成。

四、运用知识,拓展思维。

师:刚才大家用转化的方法,把圆剪拼成近似的长方形,研究发现了圆的面积公式,孩子们真了不起,老师替你们高兴。根据公式,要求圆的面积,只需要知道什么条件?(生回答)课前“马儿的困惑”现在能解决吗?(出示课件)

1、巩固练习:

(1)马儿被主人用一根3米长的绳子拴在了这根木桩上,它可以吃到多大范围内的草呢?(学生独立解答,抽生黑板板书交流,教师点拨评价。)

(2)计算下面图形的面积。(学生独立完成,抽生展台交流,教师点评。)

2、拓展提高。

(1)圆形桌面的周长是62.8分米,给这个圆桌铺上一块玻璃,每平方分米的玻璃价格为0。3元。这块圆形玻璃需要多少元?(学生独立完成,抽生展台交流,教师点评。)

(2)用一张长8厘米、宽为6厘米的长方形的纸剪出一个最大的圆。这个圆的面积是多少平方厘米?

五、课堂小结。这节课你有什么收获?学生互动式发言。

板书设计:

评析:(指导教师:冉显志)

本节课由田英老师执教,在xxxx年秋优质课比赛中获得优秀奖。

《圆面积的计算》评课稿 篇6

圆面积公式的推导分析论文

教学圆面积公式的推导,我曾听过三种不同的教法,现分别简介过程及稍作评点。

〔第一种教法〕

(1)复习长方形面积计算公式。

(2)让学生自学课本中推导圆面积计算公式的过程。

(3)教师边用教具演示,边要求学生回答:

①拼成的图形近似于什么图形?想一想,如果等分的份数越多,拼成的图形会怎么样?

②拼成的图形与原来圆的面积相等吗?

③这个近似长方形的长相当于圆的什么?它的宽相当于圆的什么?

(4)教师要求学生说出由长方形面积计算公式,推导出圆面积计算公式的方法(可按课本说)。

(5)揭示圆的面积公式。

〔评:这种教法,看起来是引导学生自学,并结合演示让学生回答问题,似乎学生学得较主动,实际上学生未有实践、思考的过程,只是“依样画葫芦”,对其中的道理不能弄懂、弄通,这属于机械的学习。〕

〔第二种教法〕

1、导入新课。

教师让学生回忆一下,以前学习习近平行四边形、三角形、梯形的面积计算时,是用什么方法推导它们的计算公式的。(用割、拼法拼成长方形或平行四边形进行计算,教师出示割、拼教具分别作简单的演示。)接着,出示一张圆形硬纸片,问:“怎样计算它的面积呢?”(揭示课题)教师指出:我们仍可用以前学过的割、拼法,把圆转化为已学过的图形,运用此图形的面积计算方法,推导出圆面积的计算方法。

2、实际操作。

要求学生拿出圆面积的割拼图形学具,在教师的指导下,边操作,边回答以下问题:

①把一个圆平分成两半,每一个半圆形的哪一部分长度相当于圆周长的1/2?再把每一个半圆形平均分成8等份(如课本的切割图),那么哪一段的长度相当于圆的半径?

②想一想:能不能把这些等分出的图形,拼成近似于我们以前学过的图形?怎样拼?(要求学生动手实践,并指名演示拼出的几种不同的图形。如:长方形、平行四边形、梯形等。)

③所拼出的图形面积与原来圆面积相等吗?

3.推导公式。

先以拼出的近似长方形的图形为例,教师引导学生弄清,若平分的份数越多,拼成的图形越接近长方形。进而,教师要求学生据图回答:割拼后的长方形的长相当于圆的哪一部分的长度?宽相当于圆的哪一部分的长度?从而

由长方形的面积=长×宽

↓↓

得圆的面积=πr×r=πr[2]。

然后,出示拼出的近似的平行四边形或梯形,再次推导看能否得出上面的圆面积公式(略)。这样就得到了证实,使学生确信无疑。

〔评:这种教法比第一种教法有很大的改进,教师首先通过复习旧知,提出解决问题的。办法,把新旧知识有机结合起来,明确了本课中心内容,然后让学生亲手操作割拼成几种已学过的图形,引导学生观察、思考、比较、推导,其间不囿于课本中的推导方法,让学生思维得以发散,从而强化了转化思想,多渠道地推得圆面积计算公式。学生在学习过程中,始终处于积极主动的状态,这种学习是有意义的学习,不仅使他们“学会”,而且使他们“会学”,且有助于发展学生的智能。〕

〔第三种教法〕

1、引入新课。

教师开导:圆在日常生活、生产实践及科学实验中,有着广泛的应用。上节课我们学习了圆的周长计算,但仍不够,还要学会计算圆的面积。如计算一个雷达圆形屏幕的面积,一个圆形花圃的面积等。怎样才能算出它的面积呢?(揭示、板书课题)。

2、创设情境。

教师用几张相等的圆纸片,运用折纸、剪纸的方法,分别折剪成正四边形、正八边形、正十六边形,然后再分别与原来的图纸片叠在一起,见下图:

(附图{图})

折四等份剪成折八等份剪成折十六等份剪成

正四边形正八边形正十六边形

引导学生观察、对比三个内接正多边形与圆的面积差(阴影部分)谁大谁小,并启发学生归结出:折成的等份数越多,剪成的正多边形边数越多,它就越接近圆。其中正多边形的每等份(三角形)就越接近圆的每等份。

3、推导公式。

师:同学们现在要计算圆的面积,选用哪种正多边形为好?为什么?

生[,1]:选正十六边形为好,因为它较接近圆。

生[,2]:选边数越多的正多边形更好,因为它更接近圆。

师:回答得很好,根据现有的右图,怎样计算圆的面积呢?请大家思考以下问题:

(1)圆的面积相当于多少个三角形面积之和?

(2)这些三角形的底边之和相当于圆的什么?

(3)每个三角形的高相当于圆的什么?

学生边回答,教师边板书:

正十六边形的面积=S[,三角形]×16

=底边×高÷2×16

=底边×16×高÷2

↓↓

圆的面积=2πr×r÷2

=πr[2]

最后让学生自学课本中的推导方法,质疑解难。进而教师小结:推导圆的面积公式与以前推导有关图形面积公式一样,把圆转化为已学过的图形进行计算,同学们课后如有兴趣,还可将圆割拼为平行四边形、梯形,看是否仍能推出S[,圆]=πr[2]。

〔评:这种教法具有以下几个特点:

1、导入新课开门见山,使学生感到学习圆的面积是实际中的需要,从而激发了学生的求知欲望。

2、在推导圆面积公式前,教师创设情境,让学生领悟隐含于直观演示中的初步“极限”思想,有助于发展学生空间想象力和空间观念,从而为推导公式作好铺垫。这是前两种教法所不及的。

3、运用“整体-部分-整体”,分割求和的方法推导圆面积公式,新颖独特,学生易于接受,又以课本中的方法及其他方法作验证,使学生加深理解,记忆牢固。

4、小结中能促使新知与原有认知结构中有关观念建立起联系,学生的学习是“有意义”的学习。

总评:教学圆面积公式的推导,要充分运用直观手段,引发学生积极思考,不仅使学生知其然,还要知其所以然,要把教材本身的内在联系揭示出来,促使学生运用已学知识主动地去获取新知;既使学生“学会”,又使学生“会学”,让他们在学习中同时学到科学的方法,提高学习能力,这样才能取得较好的教学效果。由此可见,后两种教法是可取的,且教法三更佳。

圆的面积教案 篇7

教学目标:

1、通过练习,使学生进一步掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

2、进一步培养学生运用已有知识解决新问题的能力,体验圆形与生活的联系,感受平面图形的学习价值,提高数学学习兴趣和学好数学的自信心。

教学重点:

进一步掌握圆的面积公式,能正确计算圆的面积

教学难点:

能正确计算圆的面积,并能应用公式解决相关的简单实际问题

教学流程:

一、基本练习:

1.计算下面各圆的面积。r=4分米,d=10厘米,r=6米,d=14米

2、引入谈话。师:今天我们继续学习圆的面积计算。

二、综合练习

1、完成练习十九第2题。要求:“铁饼投掷圈的面积比铅球投掷圈的面积大多少平方米?”首先要知道什么?根据直径怎样求出圆的面积?

2.完成练习十九第3题。根据圆的周长怎样求出圆的半径呢?

3、完成练习十九第4题。要求圆桌面面积必须知道什么?根据哪个求圆桌面的半径?

4、完成练习十九的第5题。师追问:圆的面积和周长是怎样算的?分别指的是什么:

意义上有什么不同?

三、课堂总结

师:生活中有很多东西的形状是圆形的,有时需要计算它的面积或周长,谁能说说在实际运用中需要注意什么?

圆的面积教案 篇8

一、以旧引新(6分钟)

1.复习正方形的面积公式和圆的面积公式。

2.回答下面各圆的面积。

1.说出S正=a2、S圆=πr2

2.左圆面积=π×22=4π

右圆面积=π×(2÷2)2=π

1.边长是5cm的正方形面积是多少?

5×5=25(cm2)

2.如果r=4cm,则圆的面积是多少?

3.14×42

=3.14×16

=50.24(cm2)

二、动手操作,感知特点。(15分钟)

1.探究外方内圆图形和外圆内方图形的特点。课件出示两种图形,

思考:

(1)外方内圆的图形是怎样组成的?它有什么特点?

老师明确:外方内圆的图形称为圆外切正方形。

(2)外圆内方的图形是怎样组成的?它有什么特点?

老师明确:外圆内方的图形称为圆内接正方形。

2.引导学生画一个边长为8cm的正方形,然后在这个正方形内画一个最大的圆。

3.引导学生在圆内画一个最大的正方形。

4.将图形分解,分解为同一个圆的外切正方形和内接正方形两个组合图形。

1.

(1)外方内圆的图形是一个正方形内有一个最大的圆,圆的直径等于正方形的边长。

(2)外圆内方的图形是一个圆内有一个最大的正方形,正方形的对角线等于圆的直径。

2.小组合作讨论交流,然后说一说自己是怎么画的——以正方形的边长为直径画一个圆,正方形对角线的交点是这个圆的圆心。

3.小组合作讨论交流,说出作图的方法并明确:正方形的对角线等于圆的直径。

4.小组合作,将一个图形分解为同一个圆的外切正方形和内接正方形两个组合图形。

3.请画出一个半径是4cm的圆,并画出它的外切正方形和内接正方形,并说明画法。

三、探究思考,解决问题。(10分钟)

1.计算圆外切正方形与圆之间部分的面积。

(1)课件出示半径为1m的圆外接正方形。组织学生讨论计算方法。

(2)组织学生算出正方形和圆之间部分的面积。

2.计算出圆内接正方形与圆之间部分的面积。

课件出示半径为1m的圆的。方形组合图形,组织学生讨论计算方法。

1.

(1)观察图形的特点,讨论计算方法并尝试汇报交流。

(2)分别算出这个圆和正方形的面积:

S圆=3.14×12=3.14m2

S正=2×2=4m2

S阴=S正-S圆

=4-3.14

=0.86m2

2.观察图形,发现圆的半径与正方形的关系,讨论计算方法并尝试汇报交流。

4.王师傅做一个零件,零件的形状是圆内接正方形,已知圆的直径为12cm,你能计算出正方形的面积吗?

四、拓展应用。(5分钟)

1.如下图,已知圆的半径是3cm,求这个圆和正方形之间的面积。

2.下图中正方形铜球的直径是22.5mm,中间正方形的边长是6mm,求这个铜球的面积是多少?

1.读题,审题,明确题意后,尝试独立完成。

2.独立完成,然后全班汇报。

5.计算阴影部分的面积。

×102π-102≈57(cm2)

五、全课总结。(5分钟)

1.谈谈这节课你有哪些体会。

2.布置作业。

学生谈本节课学习的收获。

教学过程中老师的疑问

圆面积公式的推导分析论文 篇9

推导圆面积计算公式的三种教法评介

教学圆面积公式的推导,我曾听过三种不同的教法,现分别简介过程及稍作评点。

〔第一种教法〕

(1)复习长方形面积计算公式。

(2)让学生自学课本中推导圆面积计算公式的过程。

(3)教师边用教具演示,边要求学生回答:

①拼成的图形近似于什么图形?想一想,如果等分的份数越多,拼成的图形会怎么样?

②拼成的图形与原来圆的面积相等吗?

③这个近似长方形的长相当于圆的什么?它的宽相当于圆的什么?

(4)教师要求学生说出由长方形面积计算公式,推导出圆面积计算公式的方法(可按课本说)。

(5)揭示圆的面积公式。

〔评:这种教法,看起来是引导学生自学,并结合演示让学生回答问题,似乎学生学得较主动,实际上学 生未有实践、思考的过程,只是“依样画葫芦”,对其中的道理不能弄懂、弄通,这属于机械的学习。〕

〔第二种教法〕

1、导入新课。

教师让学生回忆一下,以前学习习近平行四边形、三角形、梯形的面积计算时,是用什么方法推导它们的计算 公式的。(用割、拼法拼成长方形或平行四边形进行计算,教师出示割、拼教具分别作简单的演示。)接着, 出示一张圆形硬纸片,问:“怎样计算它的面积呢?”(揭示课题)教师指出:我们仍可用以前学过的割、拼 法,把圆转化为已学过的图形,运用此图形的面积计算方法,推导出圆面积的计算方法。

2、实际操作。

要求学生拿出圆面积的割拼图形学具,在教师的指导下,边操作,边回答以下问题:

①把一个圆平分成两半,每一个半圆形的哪一部分长度相当于圆周长的1/2?再把每一个半圆形平均分 成8等份(如课本的切割图),那么哪一段的长度相当于圆的半径?

②想一想:能不能把这些等分出的图形,拼成近似于我们以前学过的图形?怎样拼?(要求学生动手实践 ,并指名演示拼出的几种不同的图形。如:长方形、平行四边形、梯形等。)

③所拼出的图形面积与原来圆面积相等吗?

3.推导公式。

先以拼出的近似长方形的图形为例,教师引导学生弄清,若平分的份数越多,拼成的图形越接近长方形。 进而,教师要求学生据图回答:割拼后的长方形的长相当于圆的哪一部分的长度?宽相当于圆的哪一部分的长 度?从而

由 长方形的面积=长×宽

↓ ↓

得 圆的面积 =πr×r=πr[2]。

然后,出示拼出的近似的平行四边形或梯形,再次推导看能否得出上面的圆面积公式(略)。这样就得到 了证实,使学生确信无疑。

〔评:这种教法比第一种教法有很大的改进,教师首先通过复习旧知,提出解决问题的办法,把新旧知识 有机结合起来,明确了本课中心内容,然后让学生亲手操作割拼成几种已学过的图形,引导学生观察、思考、 比较、推导,其间不囿于课本中的推导方法,让学生思维得以发散,从而强化了转化思想,多渠道地推得圆面 积计算公式。学生在学习过程中,始终处于积极主动的状态,这种学习是有意义的学习,不仅使他们“学会” ,而且使他们“会学”,且有助于发展学生的智能。〕

〔第三种教法〕

1、引入新课。

教师开导:圆在日常生活、生产实践及科学实验中,有着广泛的应用。上节课我们学习了圆的周长计算, 但仍不够,还要学会计算圆的面积。如计算一个雷达圆形屏幕的面积,一个圆形花圃的面积等。怎样才能算出 它的面积呢?(揭示、板书课题)。

2、创设情境。

教师用几张相等的圆纸片,运用折纸、剪纸的方法,分别折剪成正四边形、正八边形、正十六边形,然后 再分别与原来的图纸片叠在一起,见下图:

(附图 {图})

折四等份剪成 折八等份剪成 折十六等份剪成

正四边形 正八边形 正十六边形

引导学生观察、对比三个内接正多边形与圆的面积差(阴影部分)谁大谁小,并启发学生归结出:折成的 等份数越多,剪成的正多边形边数越多,它就越接近圆。其中正多边形的每等份(三角形)就越接近圆的每等 份。

3、推导公式。

师:同学们现在要计算圆的面积,选用哪种正多边形为好?为什么?

生[,1]:选正十六边形为好,因为它较接近圆。

生[,2]:选边数越多的`正多边形更好,因为它更接近圆。

师:回答得很好,根据现有的右图,怎样计算圆的面积呢?请大家思考以下问题:

(1)圆的面积相当于多少个三角形面积之和?

(2)这些三角形的底边之和相当于圆的什么?

(3)每个三角形的高相当于圆的什么?

学生边回答,教师边板书:

正十六边形的面积=S[,三角形]×16

=底边×高÷2×16

=底边×16×高÷2

↓ ↓

圆的面积=2πr× r÷2

=πr[2]

最后让学生自学课本中的推导方法,质疑解难。进而教师小结:推导圆的面积公式与以前推导有关图形面 积公式一样,把圆转化为已学过的图形进行计算,同学们课后如有兴趣,还可将圆割拼为平行四边形、梯形, 看是否仍能推出S[,圆]=πr[2]。

〔评:这种教法具有以下几个特点:

1、导入新课开门见山,使学生感到学习圆的面积是实际中的需要,从而激发了学生的求知欲望。

2、在推导圆面积公式前,教师创设情境,让学生领悟隐含于直观演示中的初步“极限”思想,有助于发 展学生空间想象力和空间观念,从而为推导公式作好铺垫。这是前两种教法所不及的。

3、运用“整体-部分-整体”,分割求和的方法推导圆面积公式,新颖独特,学生易于接受,又以课本 中的方法及其他方法作验证,使学生加深理解,记忆牢固。

4、小结中能促使新知与原有认知结构中有关观念建立起联系,学生的学习是“有意义”的学习。

总评:教学圆面积公式的推导,要充分运用直观手段,引发学生积极思考,不仅使学生知其然,还要知其 所以然,要把教材本身的内在联系揭示出来,促使学生运用已学知识主动地去获取新知;既使学生“学会”, 又使学生“会学”,让他们在学习中同时学到科学的方法,提高学习能力,这样才能取得较好的教学效果。由 此可见,后两种教法是可取的,且教法三更佳。

一键复制全文保存为WORD