《等差数列》教案(优秀8篇)

作为一名默默奉献的教育工作者,时常要开展教学设计的准备工作,借助教学设计可以让教学工作更加有效地进行。一份好的教学设计是什么样子的呢?下面是整理的《等差数列》教案(优秀8篇),希望可以启发、帮助到大家。

数学等差数列教案 篇1

[教学目标]

1、知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

2、过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

3、情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

[教学重难点]

1、教学重点:等差数列的概念的理解,通项公式的推导及应用。

2、教学难点:

(1)对等差数列中“等差”两字的把握;

(2)等差数列通项公式的推导。

[教学过程]

一。课题引入

创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

二、新课探究

(一)等差数列的定义

1、等差数列的定义

如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

(二)等差数列的通项公式

探究1:等差数列的通项公式(求法一)

如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?

根据等差数列的定义可得:

因此等差数列的通项公式就是:,

探究2:等差数列的通项公式(求法二)

根据等差数列的定义可得:

将以上-1个式子相加得等差数列的通项公式就是:,

三、应用与探索

例1、(1)求等差数列8,5,2,…,的第20项。

(2)等差数列-5,-9,-13,…,的第几项是–401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。

例2、在等差数列中,已知=10,=31,求首项与公差d.

解:由,得。

在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

巩固练习

1、等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。

2、一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。

四、小结

1、等差数列的通项公式:

公差;

2、等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;

3、判断一个数列是否为等差数列只需看是否为常数即可;

4、利用从特殊到一般的思维去发现数学系规律或解决数学问题。

五、作业:

1、必做题:课本第40页习题2.2第1,3,5题

2、选做题:如何以最快的速度求:1+2+3+???+100=

高中数学等差数列教案大全 篇2

等差数列的教学设计

教学理念: 数学教学是思维过程的教学,如何引导学生参与到教学过程中来,尤其是在思维上深层次的 参与 ,是促进学生良好的认知结构,培养能力,全面提高素质的关键。数学教学中的探究式对培养和提高学生的自主性、能动性和创造性有着非常重要的意义。

设计思想: 本节借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。

一、教材分析:高考资源网

教学内容:

高中数学必修第五模块第二章第二节,等差数列,两课时内容,本节是第一课时,研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。

教学地位:

本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。同时也是培养学生数学能力的良好题材。等差数列是学生探究特殊数列的开始,它对 后续 内容的学习,无论在知识上,还是在方法上都具有积极的意义。高考资源网

教学重点:

理解等差数列概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题,体会等差数列与一次函数之间的关系。

教学难点:

对等差数列概念的理解及从函数、方程角度理解通项公式,概括通项公式推导过程中体现出的数学思想方法。

二、学习者分析:

高二学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。

三、教学目标:高考资源网

知识目标:

理解等差数列定义,掌握等差数列的通项公式。

能力目标:高考资源网

培养学生观察、归纳能力,在学习过程中,体会数形结合思想、归纳思想和化归思想并加深认识;通过概念的引入与通项 公式 的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力。

情感目标:

①通过个性化的学习增强学生的自信心和意志力。

②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。

③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。

四、教法和学法的分析:高考资源网

通过探究式教学方法充分利用现实 情景 ,尽可能的增加教学过程的趣味性、实践性。利用多媒体课件和实例等丰富学生的学习资源,强调学生动手操作试验和主动参与,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而使学生即获得知识又发展智能的目的。

2、 在学法上,引导学生多角度,多层面认识事物,学会探究。教师是学生的学习的组织者、促进着、合作者,在本节课的备课和教学过程中,为学生的动手实践,自主探索与合作交流的机会搭建平台,鼓励学生提出自己的见解,学会提出问题解决问题,通过恰当的教学方式让学生学会自我调适,自我选择。

五、教学媒体和教学技术的选用

多媒体计算机和几何画板

通过计算机模拟演示,使学生获得感性知识的同时,为掌握理性知识创造条件,这样做,可以使学生有兴趣地学习,注意力也容易集中,符合教学论中的直观性原则和可接受性原则。本节课打破传统的一言堂的格局代之以人为本、民主、开放、特色和建立在信息网络平台上的现代教学格局。

六、教学程序:

(一)设置问题,引导发现形成概念w。

师:看大屏幕。高考资源网

情景1(播放奥运会女子举重场面)

2008年北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg):

48,53,58,63

情景2 水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m)

18,15.5,13,10.5,8,5.5

情景3 我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:

本利和=本金 (1+利率 存期)

时间 年初本金(元) 年末本利和(元) 第1年 10000 10072 第2年 10000 10144 第3年 10000 10216 第4年 10000 10288 第5年 10000 10360 例如,按活期存入10000元,年利率是0.72%,那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税)

各年末本利和(单位:元)高考资源网

10072,10144,10216,10288,10360

师:思考上述各组数据反映了什么样的信息?

每行数有何共同特点?请同学们互相讨论。

(学生纷纷议论,有的几个人在一起商量)高考资源网

(从宏观上 : 情景1 让学生体验成功申办奥运会的喜悦心情,激发勇于拼搏的坚强意志;情景2让学生认识到保护水资源,保护生态平衡的意识;情景3 倡导节约意识,纳税意识。)

从微观上,数学研究的对象是数,我们抛开具体的背景,从表格中抽象出一般数列。

48 53 58 63 18 15.5 13 10.5 8 5.5 10072 10144 10216 10288 10360 师:(启发学生)你能用数学语言来描述上述数列的共同特征吗?

学生1:后一项与它的前一项的差等于常数。

师:反例:1,3,5,6,12,这样的数列特征和上述数列的特征一样吗?

学生1:不一样,要加上同一个常数。

学生2:每一项与它的前一项的差等于同一个常数。

师:反例:1,3,4,5,6,7,这样的数列特征和上述数列的特征一样吗?

学生2:不一样,必须从第二项开始。

学生3:从第二项起,每一项与它的前一项的差等于同一个常数。

(教师把学生的回答写在黑板上,通过反例,使学生深刻理解几组数列的共同特征:

= 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起)

师:能不能用数学语言表示?

学生4:

师:等价吗?

学生4:应加上(d是常数), .

(让学生充分讨论,注意文字语言与数学符号语言的转化的严谨性)

师:对式子进行变形可得 。

这样的数列在生活中的例子,谁能再举几个?

学生5:某剧场前8排的座位数分别是

52,50,48,46,44,42,40,38.

学生6:全国统一鞋号中成年女鞋的各种尺码分别是

21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25

学生7:马路边的路灯,相邻两盏之间的距离构成的数列。

师:如何用数列表示?

学生8:设相邻两盏之间的距离为a,该数列为

a,a,a,a,……,为常数列,即常数列都具有这种特征。

(让学生举例,加深感性认识)

师:满足这种特征的数列很多,我们有必要为这样的数列取一个名字?

学生(共同):等差数列。

师:(学生叙述,板书定义)高考资源网

一般的,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,d为公差,a1为数列的首相。

提出课题《等差数列》

对定义进行分析,强调: = 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起。注意对概念严谨性的分析。

师:回到表格中,分别说出它们的公差。

学生9:依次是d=7,d=1,d=8,d=-6,d=5,d=-2.5,d=72.

师:在计算年末本利和的问题中求 时,能不能不按本利和=本金 (1+利率 存期)

求而按数列的特征求呢?

学生:若能求得通项公式,问题就很好解决。

(再提出问题,引导发现求通项公式的必要性)

(二)启发、引导推出等差数列的通项公式

师:把问题推广到一般情况。若一个数列 是等差数列,它的公差是d,那么数列 的通项公式是什么?高考资源网

启发学生:(归纳、猜想)可用首相与公差表示数列中任意一项。

学生10: 即:

即:

即:

由此可得:

师:从第几项开始归纳的?

学生10:第二项,所以n≥2。

师:n=1时呢?

高中等差数列的教学设计 篇3

教学目标

1、通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

2、利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;

3、通过参与编题解题,激发学生学习的兴趣。

教学重点,难点

教学重点是通项公式的认识;

教学难点是对公式的灵活运用.

教学用具

实物投影仪,多媒体软件,电脑。

教学方法

研探式。

教学过程()

一。复习提问

前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?

等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用。

二。主体设计

通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 )。找学生试举一例如:“已知等差数列 中,首项 ,公差 ,求 。”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上。

1、方程思想的运用

(1)已知等差数列 中,首项 ,公差 ,则-397是该数列的第 项。

(2)已知等差数列 中,首项 , 则公差

(3)已知等差数列 中,公差 , 则首项

这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量。

2、基本量方法的使用

(1)已知等差数列 中, ,求 的值。

(2)已知等差数列 中, , 求 。

若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由 和 写出通项公式,便可归结为前一类问题。解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量。

教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定)。

如:已知等差数列 中, …

由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

(3)已知等差数列 中, 求 ; ; ; ;…。

类似的还有

(4)已知等差数列 中, 求 的值。

以上属于对数列的项进行定量的研究,有无定性的判断?引出

3、研究等差数列的单调性,考察 随项数 的变化规律,着重考虑 的情况。 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果,这个结果与考察相邻两项的差所得结果是一致的,

4、研究项的符号

这是为研究等差数列前 项和的最值所做的准备工作。可配备的题目如

(1)已知数列 的通项公式为 ,问数列从第几项开始小于0?

(2)等差数列 从第 项起以后每项均为负数。

三。小结

1、 用方程思想认识等差数列通项公式;

2、 用函数思想解决等差数列问题。

等差数列教学设计 篇4

【教学目标】

一、知识与技能

1.掌握等差数列前n项和公式;

2.体会等差数列前n项和公式的推导过程;

3.会简单运用等差数列前n项和公式。

二、过程与方法

1. 通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;

2. 通过公式的运用体会方程的思想。

三、情感态度与价值观

结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。

【教学重点】

等差数列前n项和公式的推导和应用。

【教学难点】

在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。

【重点、难点解决策略】

本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。

【教学用具】

多媒体软件,电脑

【教学过程】

一、明确数列前n项和的定义,确定本节课中心任务:

本节课我们来学习《等差数列的前n项和》,那么什么叫数列的前n项和呢,对于数列{an}:a1,a2,a3,…,an,…我们称a1+a2+a3+…+an为数列{an}的前n项和,用sn表示,记sn=a1+a2+a3+…+an,

如S1 =a1, S7 =a1+a2+a3+……+a7,下面我们来共同探究如何求等差数列的前n项和。

二、问题牵引,探究发现

问题1:(播放媒体资料情景引入)印度泰姬陵世界七大奇迹之一。传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见图),奢靡之程度,可见一斑。你知道这个图案一共花了多少圆宝石吗?

即: S100=1+2+3+······+100=?

著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。

特点: 首项与末项的和: 1+100=101,

第2项与倒数第2项的和: 2+99 =101,

第3项与倒数第3项的和: 3+98 =101,

· · · · · ·

第50项与倒数第50项的和: 50+51=101,

于是所求的和是: 101×50=5050。

1+2+3+ ······ +100= 101×50 = 5050

同学们讨论后总结发言:等差数列项数为偶数相加时首尾配对,变不同数的加法运算为相同数的乘法运算大大提高效率。高斯的方法很妙,如果等差数列的项数为奇数时怎么办呢?

探索与发现1:假如让你计算从第一层到第21层的珠宝数,高斯的首尾配对法行吗?

即计算S21=1+2+3+ ······ +21的值,在这个过程中让学生发现当项数为奇数时,首尾配对出现了问题,通过动画演示引导帮助学生思考解决问题的办法,为引出倒序相加法做铺垫。

把“全等三角形”倒置,与原图构成平行四边形。平行四边形中的每行宝石的个数均为21个,共21行。有什么启发?

1+ 2 + 3 + …… +20 +21

21 + 20 + 19 + …… + 2 +1

S21=1+2+3+…+21=(21+1)×21÷2=231

这个方法也很好,那么项数为偶数这个方法还行吗?

探索与发现2:第5层到12层一共有多少颗圆宝石?

学生探究的同时通过动画演示帮助学生思考刚才的方法是否同样可行?请同学们自主探究一下(老师演示动画帮助学生)

S8=5+6+7+8+9+10+11+12=

【设计意图】进一步引导学生探究项数为偶数的等差数列求和时倒序相加是否可行。从而得出倒序相加法适合任意项数的等差数列求和,最终确立倒序相加的思想和方法!

好,这样我们就找到了一个好方法——倒序相加法!现在来试一试如何求下面这个等差数列的前n项和?

问题2:等差数列1,2,3,…,n, … 的前n项和怎么求呢?

解:(根据前面的学习,请学生自主思考独立完成)

【设计意图】强化倒序相加法的理解和运用,为更一般的等差数列求和打下基础。

至此同学们已经掌握了倒序相加法,相信大家可以推导更一般的等差数列前n项和公式了。

问题3:对于一般的等差数列{an}首项为a1,公差为d,如何推导它的前n项和sn公式呢?

即求 =a1+a2+a3+……+an=

∴(1)+(2)可得:2

∴公式变形:将代入可得:

【设计意图】学生在前面的探究基础上水到渠成顺理成章很快就可以推导出一般等差数列的前n项和公式,从而完成本节课的中心任务。在这个过程中放手让学生自主推导,同时也复习等差数列的通项公式和基本性质。

三、公式的认识与理解:

1、根据前面的推导可知等差数列求和的两个公式为:

(公式一)

(公式二)

探究: 1、

(1)相同点: 都需知道a1与n;

(2)不同点: 第一个还需知道an ,第二个还需知道d;

(3)明确若a1,d,n,an中已知三个量就可求Sn。

2、两个公式共涉及a1, d, n, an,Sn五个量,“知三”可“求二”。

2、探索与发现3:等差数列前n项和公式与梯形面积公式有什么联系?

用梯形面积公式记忆等差数列前 n 项和公式,这里对图形进行了割、补两种处理,对应着等差数列 n 项和的两个公式。,请学生联想思考总结来有助于记忆。

【设计意图】帮助学生类比联想,拓展思维,增加兴趣,强化记忆

四、公式应用、讲练结合

1、练一练:

有了两个公式,请同学们来练一练,看谁做的快做的对!

根据下列各题中的条件,求相应的等差数列{an}的Sn :

(1)a1=5,an=95,n=10

解:500

(2)a1=100,d=-2,n=50

解:

【设计意图】熟悉并强化公式的理解和应用,进一步巩固“知三求二”。

下面我们来看个例题:

2、2000年11月14日教育部下发了<<关于在中小学实施“校校通”工程的通知>>.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网。 据测算,2001年该市用于“校校通”工程的经费为500万元。为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元。那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?

解:设从2001年起第n年投入的资金为an,根据题意,数列{an}是一个等差数列,其中 a1=500, d=50

那么,到2010年(n=10),投入的资金总额为

答: 从2001年起的未来10年内,该市在“校校通”工程中的总投入是7250万元。

【设计意图】让学生体会数列知识在生活中的应用及简单的数学建模思想方法。

3、反馈达标:

练习一:在等差数列{an}中,a1=20, an=54,sn =999,求n.

解:由解n=27

练习2: 已知{an}为等差数列,,求公差。

解:由公式得

即d=2

【设计意图】进一强化求和公式的灵活应用及化归的思想(化归到首项和公差这两个基本元)。

五、归纳总结 分享收获:(活跃课堂气氛,鼓励学生大胆发言,培养总结和表达能力)

1、倒序相加法求和的思想及应用;

2、等差数列前n项和公式的推导过程;

3、掌握等差数列的两个求和公式,;

4、前n项和公式的灵活应用及方程的思想。

六、作业布置:

(一)书面作业:

1.已知等差数列{an},其中d=2,n=15, an =-10,求a1及sn。

2.在a,b之间插入10个数,使它们同这两个数成等差数列,求这10个数的和。

(二)课后思考:

思考:等差数列的前n项和公式的推导方法除了倒序相加法还有没有其它方法呢?

【设计意图】通过布置书面作业巩固所学知识及方法,同时通过布置课后思考题来延伸知识拓展思维。

附:板书设计

等差数列的前n项和

1、数列前n项和的定义:

2、等差数列前n项和公式的推导:

3、公式的认识与理解:

公式一:

公式二:

四:例题及解答:

议练活动:

高中等差数列的教学设计 篇5

一、知识与技能

1、了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;

2、正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项。

二、过程与方法

1、通过对等差数列通项公式的推导培养学生:的观察力及归纳推理能力;

2、通过等差数列变形公式的教学培养学生:思维的深刻性和灵活性。

三、情感态度与价值观

通过等差数列概念的归纳概括,培养学生:的观察、分析资料的能力,积极思维,追求新知的创新意识。

教学过程

导入新课

师:上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法。这些方法从不同的角度反映数列的特点。下面我们看这样一些数列的例子:(课本P41页的4个例子)

(1)0,5,10,15,20,25,…;

(2)48,53,58,63,…;

(3)18,15.5,13,10.5,8,5.5…;

(4)10 072,10 144,10 216,10 288,10 366,…。

请你们来写出上述四个数列的第7项。

生:第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510。

师:我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说。

生:这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7项为78。

师:说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征。

生:1每相邻两项的差相等,都等于同一个常数。

师:作差是否有顺序,谁与谁相减?

生:1作差的顺序是后项减前项,不能颠倒。

师:以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列。

这就是我们这节课要研究的内容。

推进新课

等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。

(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;

(2)对于数列{an},若an-a n-1=d(与n无关的数或字母),n≥2,n∈N*,则此数列是等差数列,d叫做公差。

师:定义中的关键字是什么?(学生:在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环。因此教师:应该教会学生:如何深入理解一个概念,以培养学生:分析问题、认识问题的能力)

生:从“第二项起”和“同一个常数”。

师::很好!

师:请同学们思考:数列(1)、(2)、(3)、(4)的通项公式存在吗?如果存在,分别是什么?

生:数列(1)通项公式为5n-5,数列(2)通项公式为5n+43,数列(3)通项公式为2.5n-15.5,…。

师:好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考。

[合作探究]

等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列{an}的首项是a1,公差是d,则据其定义可得什么?

生:a2-a1=d,即a2=a1+d.

师:对,继续说下去!

生:a3-a2=d,即a3=a2+d=a1+2d;

a4-a3=d,即a4=a3+d=a1+3d;

……

师:好!规律性的东西让你找出来了,你能由此归纳出等差数列的。通项公式吗?

生:由上述各式可以归纳出等差数列的通项公式是an=a1+(n-1)d.

师:很好!这样说来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项an了。需要说明的是:此公式只是等差数列通项公式的猜想,你能证明它吗?

生:前面已学过一种方法叫迭加法,我认为可以用。证明过程是这样的:

因为a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.将它们相加便可以得到:an=a1+(n-1)d.

师:太好了!真是活学活用啊!这样一来我们通过证明就可以放心使用这个通项公式了。

[教师:精讲]

由上述关系还可得:am=a1+(m-1)d,

即a1=am-(m-1)d.

则an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,

即等差数列的第二通项公式an=am+(n-m)d.(这是变通的通项公式)

由此我们还可以得到。

[例题剖析]

【例1】(1)求等差数列8,5,2,…的第20项;

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

师:这个等差数列的首项和公差分别是什么?你能求出它的第20项吗?

生:1这题太简单了!首项和公差分别是a1=8,d=5-8=2-5=-3.又因为n=20,所以由等差数列的通项公式,得a20=8+(20-1)×(-3)=-49.

师:好!下面我们来看看第(2)小题怎么做。

生:2由a1=-5,d=-9-(-5)=-4得数列通项公式为an=-5-4(n-1)。

由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是这个数列的第100项。

师:刚才两个同学将问题解决得很好,我们做本例的目的是为了熟悉公式,实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个)。

说明:(1)强调当数列{an}的项数n已知时,下标应是确切的数字;(2)实际上是求一个方程的正整数解的问题。这类问题学生:以前见得较少,可向学生:着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立。

【例2】已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?

例题分析:

师:由等差数列的定义,要判定{an}是不是等差数列,只要根据什么?

生:只要看差an-an-1(n≥2)是不是一个与n无关的常数。

师:说得对,请你来求解。

生:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n≥2)〕

an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p为常数,

所以我们说{an}是等差数列,首项a1=p+q,公差为p.

师:这里要重点说明的是:

(1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,…。

(2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=px+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.

(3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式。课堂练习

(1)求等差数列3,7,11,…的第4项与第10项。

分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所┣笙。

解:根据题意可知a1=3,d=7-3=4.∴该数列的通项公式为an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*)。∴a4=4×4-1=15,a 10=4×10-1=39.

评述:关键是求出通项公式。

(2)求等差数列10,8,6,…的第20项。

解:根据题意可知a1=10,d=8-10=-2.

所以该数列的通项公式为an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28.

评述:要求学生:注意解题步骤的规范性与准确性。

(3)100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,请说明理由。

分析:要想判断一个数是否为某一个数列的其中一项,其关键是要看是否存在一个正整数n值,使得an等于这个数。

解:根据题意可得a1=2,d=9-2=7.因而此数列通项公式为an=2+(n-1)×7=7n-5.

令7n-5=100,解得n=15.所以100是这个数列的第15项。

(4)-20是不是等差数列0,,-7,…的项?如果是,是第几项?如果不是,请说明理由。

解:由题意可知a1=0,,因而此数列的通项公式为。

令,解得。因为没有正整数解,所以-20不是这个数列的项。

课堂小结

师:(1)本节课你们学了什么?(2)要注意什么?(3)在生:活中能否运用?(让学生:反思、归纳、总结,这样来培养学生:的概括能力、表达能力)

生:通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式a n-a n-1=d(n≥2);其次要会推导等差数列的通项公式an=a1+(n-1)d(n≥1)。

高中等差数列的教学设计 篇6

教学目的:

1.明确等差数列的定义,掌握等差数列的通项公式。

2.会解决知道中的三个,求另外一个的问题。

教学重点:等差数列的概念,等差数列的通项公式。

教学难点:等差数列的性质

教学过程:

一、复习引入:(课件第一页)

二、讲解新课:

1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。

(课件第二页)

⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求;

⑵.对于数列{ },若 - =d (与n无关的数或字母),n≥2,n∈n ,则此数列是等差数列,d 为公差。

2.等差数列的通项公式: 【或 】等差数列定义是由一数列相邻两项之间关系而得。若一等差数列 的首项是 ,公差是d,则据其定义可得: 即: 即: 即: …… 由此归纳等差数列的通项公式可得: (课件第二页) 第二通项公式 (课件第二页)

三、例题讲解

例1 ⑴求等差数列8,5,2…的第20项(课本p111) ⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

例2 在等差数列 中,已知 , ,求 , ,

例3将一个等差数列的通项公式输入计算器数列 中,设数列的第s项和第t项分别为 和 ,计算 的值,你能发现什么结论?并证明你的结论。

小结:

①这就是第二通项公式的变形,

②几何特征,直线的斜率

例4 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。(课本p112例3)

例5 已知数列{ }的通项公式 ,其中 、 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?(课本p113例4)

分析:由等差数列的定义,要判定 是不是等差数列,只要看 (n≥2)是不是一个与n无关的常数。

注:

①若p=0,则{ }是公差为0的等差数列,即为常数列q,q,q,…

②若p≠0, 则{ }是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=px+q的图象上,一次项的系数是公差,直线在y轴上的截距为q.

③数列{ }为等差数列的充要条件是其通项 =pn+q (p、q是常数)。称其为第3通项公式

④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。

例6.成等差数列的四个数的和为26,第二项与第三项之积为40,求这四个数。

四、练习:

1、(1)求等差数列3,7,11,……的第4项与第10项。

(2)求等差数列10,8,6,……的第20项。

(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由。

(4)-20是不是等差数列0,-3 ,-7,……的项?如果是,是第几项?如果不是,说明理由。

2、在等差数列{ }中,

(1)已知 =10, =19,求 与d;

五、课后作业:

习题3.2 1(2),(4) 2.(2), 3, 4, 5, 6 。 8. 9.

高中等差数列的教学设计 篇7

[教学目标]

1、知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解 等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

2、过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

3、情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

[教学重难点]

1、教学重点:等差数列的概念的理解,通项公式的推导及应用。

2、教学难点:

(1)对等差数列中“等差”两字的把握;

(2)等差数列通项公式的推导。

[教学过程]

一。课题引入

创设情境 引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

(1)、在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:

1682,1758,1834,1910,1986,( )

你能预测出下次观测到哈雷慧星的大致时间吗?判断的依据是什么呢?

(2)、通常情况下,从地面到11km的高空,气温随高度的变化而变化符合一定的规律,请你根据下表估计一下珠穆朗玛峰峰顶的温度。

(3) 1,4,7,10,( ),16,…

(4) 2,0,-2,-4,-6,( ),…

它们共同的规律是?

从第二项起,每一项与前一项的差等于同一个常数。

我们把有这一特点的数列叫做等差数列。

二、新课探究

(一)等差数列的定义

1、等差数列的定义

如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

2、等差数列定义的数学表达式:

试一试:它们是等差数列吗?

(1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10…

(2) 5,5,5,5,5,5,…

(3) -1,-3,-5,-7,-9,…

(4) 数列{an},若an+1-an=3

3、等差中顶定义

在如下的两个数之间,插入一个什么数后这三个数就会成为一个等差数列:

(1)、2 ,( ) ,4 (2)、-12,( ) ,0 ( 3 ) a ,( ),b

如果在a与b中间插入一个数A,使a,A,b成等差数列,那么A叫做a与b的等差中项。

(二)等差数列的通项公式

探究1:等差数列的通项公式(求法一)

如果等差数列 首项是 ,公差是 ,那么这个等差数列 如何表示? 呢?

根据等差数列的定义可得:

, , ,…。

所以: ,

……

由此得 ,

因此等差数列的通项公式就是: ,

探究2:等差数列的通项公式(求法二)

根据等差数列的定义可得:

……

将以上 -1个式子相加得等差数列的通项公式就是: ,

三、应用与探索

例1、(1) 求等差数列8,5,2,…,的第20项。

(2) 等差数列 -5,-9,-13,…,的第几项是 –401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得 成立,实质上是要求方程 的正整数解。

例2、在等差数列中,已知 =10, =31,求首项 与公差d.

解:由 ,得 。

在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

巩固练习

1、 等差数列{an}的前三项依次为 a-6,-3a-5,-10a-1,则a =( )。

A. 1 B. -1 C. -2 D. 22.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。四、小结

1.等差数列的通项公式:

公差 ;

2、 等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;

3、 判断一个数列是否为等差数列只需看 是否为常数即可;

4、 利用从特殊到一般的思维去发现数学系规律或解决数学问题。

五、作业:

1、必做题:课本第40页 习题2.2 第1,3,5题

2、选做题:如何以最快的速度求:1+2+3++100=

高斯说:“请同学们预习下一节:等差数列的前N项和。”

等差数列教学设计 篇8

教学目标:

1.知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。

2.过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。

3.情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。

教学重点:

等差数列的概念及通项公式。

教学难点:

(1)理解等差数列“等差”的特点及通项公式的含义。

(2)等差数列的通项公式的推导过程及应用。

教具:多媒体、实物投影仪

教学过程:

一、复习引入:

1.回忆上一节课学习数列的定义,请举出一个具体的例子。表示数列有哪几种方法——列举法、通项公式、递推公式。我们这节课接着学习一类特殊的数列——等差数列。

2.由生活中具体的数列实例引入

(1).国际奥运会早期,撑杆跳高的记录近似的由下表给出:

你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?

(2)某剧场前10排的座位数分别是:

48、46、44、42、40、38、36、34、32、30

引导学生观察:数列①、②有何规律?

引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差0.2,数列②从左到右相差-2。

二。新课探究,推导公式

1.等差数列的概念

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

强调以下几点:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

所以上面的2、3都是等差数列,他们的公差分别为0.20,-2。

在学生对等差数列有了直观认识的基础上,我将给出练习题,以巩固知识的学习。

[练习一]判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。

1.3,5,7,…… √ d=2

2.9,6,3,0,-3,…… √ d=-3

3. 0,0,0,0,0,0,…….; √ d=0

4. 1,2,3,2,3,4,……;×

5. 1,0,1,0,1,……×

在这个过程中我将采用边引导边提问的方法,以充分调动学生学习的积极性。

2.等差数列通项公式

如果等差数列{an}首项是a1,公差是d,那么根据等差数列的定义可得:

a2 - a1 =d即:a2 =a1 +d

a3 – a2 =d即:a3 =a2 +d = a1 +2d

a4 – a3 =d即:a4 =a3 +d = a1 +3d

……

猜想: a40 = a1 +39d

进而归纳出等差数列的通项公式:an=a1+(n-1)d

此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

n=a1+(n-1)d

a2-a1=d

a3-a2=d

a4-a3 =d

……

an –a(n-1) =d

将这(n-1)个等式左右两边分别相加,就可以得到

an-a1=(n-1)d

即an=a1+(n-1)d (Ⅰ)

当n=1时,(Ⅰ)也成立,所以对一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差数列{an}的通项公式。

三。应用举例

例1求等差数列,12,8,4,0,…的第10项;20项;第30项;

例2 -401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

四。反馈练习

1.P293练习A组第1题和第2题(要求学生在规定时间内做完上述题目,教师提问)。目的:使学生熟悉通项公式对学生进行基本技能训练。

五。归纳小结提炼精华

(由学生总结这节课的收获)

1.等差数列的概念及数学表达式。

强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

2.等差数列的通项公式an= a1+(n-1) d会知三求一

六。课后作业运用巩固

必做题:课本P284习题A组第3,4,5题

一键复制全文保存为WORD