在教学工作者实际的教学活动中,通常需要准备好一份教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。那么教学设计应该怎么写才合适呢?这次漂亮的小编为您带来了《轴对称图形》教案9篇,希望大家可以喜欢并分享出去。
轴对称图形这一课的教学目标 :
1.使同学通过观察、操作初步认识轴对称现象,并能在方格子上画出简单图形的轴对称图形。
2.通过学生活动,发展学生的空间观念,培养学生观察能力和动手操作能力,学会欣赏数学美。
3.培养学生的合作意识,让学生在合作中交流、学习、互动。教学重难点能辨认对称图形,并能在方格子上画出简单的轴对称图形。
开课伊始,我便拿了剪子和彩纸,告诉学生们:“老师要送给你们一些礼物,只有细心观察,发现秘密的孩子才能得到礼物。”激发孩子们的好奇心后,我快速地开始剪纸,不一会见出了一只漂亮的蝴蝶,孩子们很兴奋,我让孩子们说说老师这怎样剪出来的,因为孩子们观察细致,所以说得准确。由此便引出了轴对称图形的概念。相继,我又剪了一些美丽的对称图形。
这样一节好的教学内容,我当然不会让学生错过动手操作的机会了,孩子们的创造力是无穷无尽的,它们撕或剪出许多美丽的对称图形。然后我又让孩子们找找生活中的对称图形。
这一节课孩子们在轻松愉快的氛围中度过。
一、教材
《轴对称图形》是苏教版小学数学三年级下册第七单元的教学内容,本课是在学生认识简单的平面图形的基础上进行的,教材从学生熟悉的事物入手,通过形式多样的活动,让学生初步感知生活中的对称现象,进而认识简单的轴对称图形和对称轴,为学生今后进一步探索简单图形的轴对称特性,把握简单图形之间的轴对称关系打好基础。教材先通过天安门、飞机、奖杯的实物图让学生观察、分析他们的共同特点,引出“对称”的概念。接下来教材将这几样物品抽象为平面图形,引[]导学生通过对折发现轴对称图形的基本特征,并初步描述了轴对称图形的'概念。
二、教学目标:
1、认知目标:通过观察和动手操作,使学生初步体会生活中的对称现象;认识轴对称图形的一些基本特征,会识别轴对称图形, 并初步知道对称轴。
2、能力目标:培养学生自主探究、观察、比较和概括的能力,以及小组合作意识。
3、情感目标:让学生在认识、制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,激发对数学学习的积极情感。
教学重点:理解轴对称图形的特征。
教学难点:掌握识别轴对称图形的方法。
三、教法
新课标指出,教无定法,贵在得法。我注重丰富学生对形状的感受和认知,联系实际生活,创设问题情境,采用直观演示法、设疑诱导法、操作发现法来组织学生开展探索性的学习活动,让他们在自主探索中学习新知,经历探索,获得知识。
四、学法
有效的数学学习活动,不是单纯的依赖模仿与记忆,而是一个有目的的,主动建构知识的过程,为此,我十分重视学生学习方法的指导,在本课中,我指导学生学习的方法为:动手操作法、自主探究法、观察发现法、合作交流法。让他们在折一折、议一议、说一说、剪一剪等一系列活动中感知对称的特征。
五、教学程序
(一)、创设情境,导入新课
课件出示天安门、飞机、奖杯图片(注意不同角度的对称),引导学生观察归纳这些物体的共同特征,接着通过多媒体演示将这些物体抽象成平面图形。最后通过课件演示这些图形的对折,让学生观察这三幅图的左边和右边或上面和下面,它们的形状、大小怎样?通过观察,估计学生能发现图形的左边和右边或上面和下面形状大小一样,从而自然的引出课题。
(二)、自主探究,感悟新知
1、折一折
让学生拿出课前准备好的天安门、飞机和奖杯三个图形,动手对折,引导观察发现。
2、说一说
操作后引导学生交流,根据学生的表述,抓住时机,引导理解“对折”、“重合”、“折痕”等关键词,引导学生采用比较法区分“重合”与“完全重合”的区别,适时帮学生进行归纳总结,引导学生得出轴对称图形的概念,知道对称轴。
3、辨一辨
结合“试一试”,让学生从学过的一些简单的平面图形中识别其中的轴对称图形。引导学生判断,操作验证,说理由,对是不是所有的“三角形”和“平行四边形”都是轴对称图形展开讨论,辨析,结合直角三角形和菱形,让学生明确要针对“这个三角形”或“这个平行四边形”进行辨别,体验数学的严谨性和“具体问题具体分析”的初步思想。
4、做一做。(创造轴对称图形)
以小组合作的方式,让学生动手制作轴对称图形,通过制作进一步体会轴对称图形的对称轴两边能完全重合。学生制作的方法是多样的,画、剪、围、拼……都可以,制作方法虽然不同,原理都是相同的,都在制作对称轴两边完全重合的图形。在这里我引导学生一边制作一边体会,相互说说是怎样做的、怎样想的,为什么说做成的图形是轴对称图形,以达到制作的目的。
(三)巩固练习、强化新知
练习是掌握知识,形成技能,发展智力的重要环节,根据学生的年龄特点和认知规律,本着趣味性,思考性,综合性的原则,由易到难,由浅入深,力求体现知识的纵横联系,做到形式均匀,层次分明,我设计以下几组练习题。
1、基础练习:“找一找”。“想想做做”第1、2、5、6题。
设计理念:让学生进一步的巩固对轴对称图形的认识,能准确地判断出一个图形是不是轴对称图形。
2、拓展练习“画一画” “猜一猜,连一连”。 “想想做做”第3、4题。
(四)、全课小结
课的最后,让学生说说收获和体会,以学生自我回顾的方式进行小结,促进学生对知识的内化掌握,培养学生自己整理知识的能力,以更大的热情投入到下一节课的学习。
(五)欣赏图片,情感体验
课件播放:生活中的对称。
设计理念:一方面让学生感受到对称的美,另一方面也让学生体会到数学来源于生活又运用于生活。
六、板书设计
轴对称图形
完全重合——轴对称图形
对折
折痕——对称轴
设计理念:板书设计力求体现知识性和简洁性,使学生一目了然。
教学内容:
轴对称图形
教学目标:
1、认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。
2、经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。
3、体验到生活中处处有数学,获得成功的喜悦,培养学生的探究精神和美感。
教学重点:
认识对称现象和轴对称图形的特点。
教学难点:
掌握识别轴对称图形的方法。
教具准备:
多媒体课件、实物图片等。
教学过程:
一、谈话引入,激发兴趣
1、说说在游乐场喜欢玩的项目,出示主题图,引导学生观察。
2、从蝴蝶形状的风筝引出对称
二、合作探究,学习新知
1、观察图形,认识对称
(1)观察几幅对称图形,引导学生感悟对称。
(2)说一说生活中的对称现象
2、动手操作,认识轴对称图形
(1)猜一猜:出示几幅轴对称图形,猜一猜它们是怎么来的。
(2)动手操作,剪出轴对称图形
师示范剪一件上衣的过程:折一折、画一画、剪一剪。
生动手剪出自己喜欢的轴对称图形。
交流展示学生的作品
(3)认识对称轴
看一看,摸一摸,说一说
画一画:师示范画出对称轴,然后学生自己画,再交流。
3、初步理解轴对称图形
(1)说一说轴对称图形的特点,初步理解轴对称图形。
(2)议一议:讨论判断轴对称图形的方法(对折后完全重合才是轴对称图形)。
(3)举一举身边的轴对称图形的例子。
三、巩固练习,拓展延伸
1、判一判:哪些是轴对称图形。
2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。
3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。
四、课堂总结
通过这节课的学习,你有什么收获?
五、欣赏轴对称图形的美丽
教材简析:
《轴对称图形》是六年《数学》中继“认识圆的特征”,“计算圆的周长和面积”之后的一个学习内容。在本章教材的编排顺序中起着承上启下的作用。把它放在圆的后面,一方面可以更好地说明轴对称图形的特点,另一方面可以对所学的各种平面图形中轴对称的情况作全面的了解。从而更好地发展学生的空间观念。
教学重点:掌握轴对称图形的概念。
教学难点:能找出轴对称图形的对称轴。
学生分析:学生已学过简单平面图形,对平面图形已有一定的认识,且初步了解研究平面图形的方式方法。高年级的学生具有好胜,好强的特点,班级中已初步形成合作交流,敢于探索与实践的良好学风,学生间相互讨论的气氛较浓。
设计理念:根据基础教育课程改革的具体目标以及鼓励学生在具体、直观操作中发现知识是《数学课程标准》的一个特点。改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放式教学,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成、发展与变化。
教学目标:
1、通过教学向学生渗透事物的特殊性存在于普遍性之中,体会对称美。
2、通过操作活动培养学生观察能力,概括能力。
3、使学生直观的认识轴对称图形,在操作中理解掌握轴对称的概念,并能找出轴对称图形的对称轴。
教学流程:
--、创设问题情境,导入课题。
1、(屏幕出示相关图片)观察下面的图形,(折一折,看一看)这些图形有什么特点?
2、指出:像前三个这样的图形,我们把它叫轴对称图形。
3、引入课题:轴对称图形
二、学生通过直观感知,操作确认等实践活动,加强对图形的认知和感受。
1、揭示轴对称图形的概念。
思考:现在你能用什么方法来检验一下这几个图形是轴对称图形。
a、学生试说轴对称图形的概念。
b、教师板书:轴对称图形的概念(完全重合重点强调)
c、让学生谈谈你是如何理解轴对称图形的。(以小组为单位,用手中图形举例说明)
d、教师结合图形说明对称轴的概念。
2、完成做一做。(让学生来汇报,同时电脑演示。)
3、我们已经学过不少平面图形,现在你动手折一折、看一看哪些图形是轴对称图形,对称轴各有几条,请你画出来。(汇报从杂乱----有规律)
4、完成做一做1(口答,屏幕演示)
5、完成做一做2(口答,屏幕演示)
教师小结:这节课我们学习了轴对称图形,知道如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。并且知道折痕所在的这条直线叫做对称轴,我们还通过动手操作知道我们学过的平面图形中哪些是轴对称图形以及各有几条对称轴。
6、质疑。
巩固练习:1、数书P1021(口答)(屏幕)
2、数书P1024(口答)(屏幕)
3、画出每组图形的对称轴。
4、在自然界和日常生活中具有轴对称性质的事物有很多,你能不能举例说明?
5、欣赏具有轴对称性质的事物。
6、判断:
所有的平行四边形都不是轴对称图形()
所有的平行四边形都是对称图形()
三、小结:通过这节课的学习你有哪些收获?
教学内容:苏教版义务教育课程标准实验教科书小学数学四年级下册第62~63页。
教学目标:
1.在操作活动中认识对称轴,使学生进一步认识轴对称图形的特征。
2.感受不同的轴对称图形的对称轴条数可能是不一样的,掌握画一些简单轴对称图形的对称轴的方法。
3.培养学生初步的观察能力、自主探究能力和动手操作能力,感受数学与生活的密切联系,陶冶学生的审美情操。
学具准备:长方形、正方形纸片各一张,课本119页中的六个图形。
教学过程:
一、复习引入
师:请同学们观察这几张漂亮的图片(出示蝴蝶、松树、花朵、五角星的图片),它们有什么相同的地方?
生:它们都是轴对称图形。
师:怎样判断一个图形是不是轴对称图形呢?
生1:把一个图形对折后,如果两边能完全重合,那这个图形就是轴对称图形。
师:这节课我们继续研究轴对称图形,进一步认识轴对称图形的特征。
[评析:用几张漂亮的轴对称图片吸引学生的注意力,引起学生的审美情趣,自然而然地复习了轴对称图形的特征,从而有效地打开了学生的知识储备,使学生尽快地进入学习状态。]
二、操作感知
1.引导学生认识对称轴。
师:长方形是轴对称图形吗?请大家拿出长方形的纸片折一折。
生1:长方形是轴对称图形,因为对折后两边能完全重合。
师:请大家打开对折后的长方形,发现长方形纸片上多了什么?
生2:我发现纸片上多了一条折痕。
师:这条折痕是怎么形成的?有什么特别的地方?
生3:它是将长方形对折后形成的,折痕的两边一模一样。
生4:折痕的两边是对称的。
师:这样的折痕是轴对称图形中特有的,所以人们给它起了个形象简洁的名字,猜猜看,叫什么?
生5:对称轴。
生6:对称线。
生7:对称中线。
……
师:很多同学都猜对了!人们把这条折痕所在位置的直线叫做——对称轴。(板书:对称轴)
2.指导学生画对称轴。
师:对称轴的画法也很特殊,一般用点画线来表示。(教师示范用点画线画出一条对称轴)
师:请同学们沿着长方形纸中的折痕画出对称轴。
(学生沿着长方形纸中的折痕描画对称轴)
师:长方形上还有其他的对称轴吗?折折看,如果有,再把它画出来。(生答略)
师:通过折、画,你在长方形中找到几条对称轴?(生答略)
师:刚才我们是通过对折找折痕,画出了长方形纸上的两条对称轴。
3.教学“试一试”。
师:请同学们拿出一张正方形的纸,先折一折,再画一画,看自己在这张正方形纸上最多能画出几条对称轴。
师:你是怎样画的?画了几条?
多媒体出示:
师:为什么长方形对角线所在的直线不是长方形的对称轴,而正方形对角线所在的直线是正方形的对称轴呢?
生1:因为沿长方形对角线对折后,两边不能完全重合,所以这条线不是长方形的对称轴;而正方形沿对角线对折后,两边能完全重合,所以这条线是正方形的对称轴。(学生边说边演示)
生2:老师,我还知道为什么。因为长方形只是对边相等,邻边不相等,所以沿对角线对折后,两边不会完全重合;而正方形是四条边都相等,所以沿对角线对折后,两边能完全重合。
师:你很善于观察与思考!正因为如此,正方形有4条对称轴,而长方形只有2条对称轴。
[评析:让学生将长方形纸对折,打开后发现多了条折痕,然后以这条折痕为切入点认识对称轴,引导学生进行操作、猜想、比较、探究、交流等活动,使学生有效地认识了对称轴的特征,学会了对折后沿折痕画出对称轴的方法,从而感知到不同的轴对称图形中,对称轴的条数可能是不一样的。]
三、探究提高
1. 完成“想想做做”第1题。
师:请同学们拿出事先准备好的图形(书上115页上的六个图形),折一折,看哪些是轴对称图形,哪些不是轴对称图形。是轴对称图形的,分别画出它的对称轴。
(生答略)
2. 探究在轴对称图形中画对称轴的方法。
师:刚才我们是通过对折的方法找到对称轴的位置,然后沿着折痕描画出对称轴的。可是,很多轴对称图形是不好对折的,比如黑板上的这个长方形好对折吗?
生:不好。
师:那怎么准确地画出黑板上这个长方形的对称轴呢?
生1:先用纸剪下与黑板同样大小的长方形,对折后按在黑板上画出来。
师:是个办法,实在没有法子的时候可以这样去做。
生2:估计一下对称轴的位置,然后画出来。
师:这样行不行呢?
生3:不行,这样画不够准确。
师:有没有既准确又简洁的方法呢?
生4:找中点。
师:找中点?怎么找?请你上来找给大家看。
(生4跑到黑板前,找出长方形一组对边的中点,然后画出了一条对称轴)
师:你们认为他的方法怎么样?
生5:这个方法好。因为通过两点就可以确定一条直线的位置,这样能又快又准地画出对称轴。
师:只要找出一组对边的中点,就能很快地确定对称轴的位置,这确实是个好方法!如果再在这个长方形画出另外一条对称轴,需要找到哪些点?
生6:再找另外一组对边的中点。
生7:也可以将长方形的对角线相连,必定有一个交点,这个交点就是长方形的中心,然后只需要找到一边的中点,将长方形的中心与一边的'中点相连就行了。
师:好呀,方法越来越巧妙。
3. 完成“想想做做”的第2题:下面的图形都是轴对称图形吗?是轴对称图形的各有几条对称轴?试着把它们画出来。
(学生各自判断,并画出轴对称图形的对称轴)
师:哪些图案是轴对称图形?(生答略)
师:你在画对称轴时是怎么确定关键的两个点的?每个轴对称图形上分别有几条对称轴?
(分别让学生点出关键的两个点,再画出对称轴)
4. 完成“想想做做”第3题:画出下面每个图形的另一半,使它成为轴对称图形。
师:要画出每个图形的另一半,使它成为一个轴对称图形,有没有什么好的方法?
生1:有,找关键的点!
师:关键的点在哪?怎么找?
(学生讨论交流)
师:谁上来点出来给大家看?
师:这些点有什么特别的地方吗?
生2:都是与原来图形中的关键点相对称。
师:对,只要找到原来图形中关键点的对称点,就能很快画出来了。
5. 完成“想想做做”第4题:先画出下面每个图形的对称轴,再在小组里交流。
师:请大家画出每个图形的对称轴,注意:能画几条就画几条。
师:每个图形各画出了几条对称轴?分别是怎么画出来的?你发现了什么?
生1 :我发现每个图形中每条边的长度都相等。
师:对,它们分别是正三角形、正方形、正五边形、正六边形。
生2:我发现是正几边形,就有几条对称轴。
师:按照这样推断,那正八边形会有几条对称轴?
生:8条。
师:这个推断是否正确呢?大家课后可以动手探究一下。
生3:我还发现一个图形中所有的对称轴都相交于图形的中心。
师:你观察得真仔细!利用这个发现,我们就能又快又准地画出轴对称图形中的多条对称轴了。
[评析:教师大胆放手,让学生通过不同梯度的探究练习,加深学生对轴对称图形的认识,引导学生通过找关键点来画轴对称图形或轴对称图形中的对称轴。在探究过程中,教师注意提供给学生充足的探究时间与空间,重视培养学生解决问题的策略意识,并尊重学生自主选择的权利。在多次充分的交流中,学生的思维发生碰撞;在策略的比较中,促进了学生认知能力的提高。]
四、总结反思
师:这节课我们继续认识了轴对称图形,你有什么新的收获?(生答略)
师:现在看看课始的这几个漂亮的轴对称图形,你能很快判断出它们各有几条对称轴吗?
(蝴蝶图片1条,松树图片1条,花朵图片2条,五角星图片5条)
师:我们身边哪些物体的面是轴对称图形,它们各有几条对称轴?
[评析:通过总结,使学生对学习内容回味无穷。教师让学生说出课始的几张漂亮的轴对称图形中对称轴的条数,并引申到找生活中的轴对称图形及说出这个轴对称图形中对称轴的条数,使学生的学习活动升华到了更高的境界。]
五、创新设计
师:在方格纸上设计一个轴对称图形,并画出它的对称轴。
(生设计,师巡视指导)
师:请设计好的同学将你的作品在小组中交流一下,并比一比,看谁设计的最美观而且有创意。
师:谁愿意上来展示一下自己的作品?
(引导学生欣赏、评价同学的作品)
[评析:“有效的数学学习活动不能单纯地依赖模仿和记忆,只有放手让学生动手操作、自主探索与合作交流,才能有效地提高学生发现问题、分析问题和解决问题的能力。”细节决定成败,本节课的最大特色是教师始终注意放手让学生去探究。尤其是对一些细节上的探究,如找“折痕”、猜“折痕”的名称、找关键点确定对称轴的准确位置……课堂上,学生积极主动,发言踊跃,争论激烈,不断有新的发现。在探究解决问题的过程中,使学生掌握了知识,学会了方法,发展了思维,提高了能力。最后,让学生自主设计一个轴对称图形,并画出它的对称轴,激发了学生的创新意识,学生兴致颇高。下课铃声在欣赏、交流、评议中响起了,然而学生久久不愿离去……]
教学目标:
1、让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2、让学生在学习的过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增强学习数学的兴趣。
教学重难点:
让学生通过折纸等方法确定轴对称图形的对称轴,会画出简单轴对称图形的对称轴。
教学准备:
教师:多媒体教学课件,白纸、长方形纸、正方形纸各一张,梯形和三角形。
学生:白纸、长方形纸、正方形纸各一张。
教学对象的分析:
这部分内容主要通过折纸等方法确定轴对称图形的对称轴,进一步体会轴对称的特征。学生在前面已经的学习中,已经知道了一个图形对折,折痕两边完全重合的图形是轴对称图形,并且认识了对称轴。所以针对这一具体内容,课的一开始就通过撕纸玩轴对称图形,学生对这一内容非常感兴趣。
教学过程:
一、“玩”对称,谈话激趣
谈话:如果给你一张纸,你打算怎么玩这张纸?……你想不想知道老师是怎么玩这张纸?看好了,先对折,对折后有一条折痕(板书:折痕),然后从折痕处撕开。怎么样,想试一试吗?(把教师的作品贴在黑板上)
二、自主探究轴对称图形的对称轴。
1、仔细观察你的作品,它是一个什么图形?(我的图形是轴对称图形)(有一条线,有一条折痕,两边完全一样,完全重合)板书:轴对称图形
提问:为什么你觉得你的图形是轴对称图形呢?(对折后两边能完全重合的图形叫做轴对称图形)
2、谈话:轴对称图形中间都有一条(折痕),而折痕所在的直线就是这个图形的对称轴,(板书:折痕所在的直线叫对称轴)。
提问:折痕所在的直线叫对称轴,那说明对称轴是一条什么?(直线)直线有什么特征?(无限延长)那么对称轴怎么画呢?
谈话:画对称轴的时候我们一般用点划线来表示。(板书:点划线)也就是先画一点再画一横,由于对称轴是一条直线,并且是无限延长的,所以我们要把这条点划线分别向上向下延长。
3、你能像老师这样在你的作品上画出对称轴吗?画好了吗?画好后同座位之间相互看看。
4、没想到吧,就这么一张白纸,简单的一折,一撕,居然创造出了数学上的轴对称图形。其实轴对称图形离咱们并不遥远。
5、教学找长方形的对称轴
1) 这是一张长方形的纸,如果让你找出这个长方形纸的所有对称轴,你准备怎么办?(对折)你赞同吗?那咱们就动手折一折并画出它的对称轴吧。
2)指名到讲台前展示自己的折法和画法。
3)通过对折,我们发现了长方形只有几条对称轴?(两条)
4)刚才我们用折纸的方法找到了长方形纸的两条对称轴,(出示黑板上画好的一个长方形),这儿也有一个长方形,画在黑板上的长方形还能对折吗?如果要你画出它的对称轴,你有还方法吗?小组内讨论讨论。指名说一说。
(先量出长方形对边的中点再连线)提问:你是怎么找到对边中点的?(量一量)谈话:我告诉你这个长方形的长是30厘米,怎么找这条边的中点?15厘米处。这条边的中点跟上面的一样。然后把两个中点用点划线连起来。
提问:对称轴找完了吗?请你继续用这种方法找完长方形其他的对称轴。
5)让学生在书上画一画。画好后提醒学生:画好的同学把老师刚刚画的这条对称轴也画上去。
提问:你一共画了几条对称轴?
由此可见,不管是长方形纸还是长方形的图,它都只有两条对称轴。
6、教学正方形的对称轴
1)研究了长方形,你觉得我们下面要研究什么图形了?(教师拿出正方形的纸)拿出正方形纸,请你用刚才研究长方形的方法,找到正方形所有的对称轴并画出各条对称轴。
2)通过刚才的研究,你能画出几条对称轴?(四条)哪四条?斜的这条你是怎么找到的?你们和他找的一样吗?原来老师和你们找的也是一样的,演示课件,是这四条吗?
3)现在我们知道了正方形有几条对称轴?(正方形有四条对称轴)和长方形相比怎么样啦?(比长方形多)多几条?哪两条?(斜的两条)
三、巩固深化,拓展延伸。
完成想想做做1
1、通过刚才的活动,我们找到了长方形和正方形的对称轴,知道了长方形有2条对称轴,正方形有4条对称轴。出示书本62页想想做做第一题中的所有图形。这儿有很多我们学过的图形,看看哪些同学能一眼就找到其中的轴对称图形,你觉得它是轴对称图形的用铅笔在上面轻轻地打上一个勾。学生独立判断。
2、你判断好了吗?你觉得怎么去检验你的判断是对的还是错的?(折一折)拿出事先准备好的这些图形折一折,如果是轴对称图形的,请你在书上画出它的对称轴。
3、学生动手操作,教师巡视,集体反馈交流。
谈话:老师发现很多同学都已经有了自己的观点,现在机会只有六个,每个同学可以选择你最有把握的一个,说一说它是不是轴对称图形,如果是的,有几条?
4、谈话:通过刚才的活动,大家都能准确的判断这6个图形是不是轴对称图形,但是,吉老师觉得心里有话要说,不知道同学们心里有没有话要说。我特别想说的是,就以梯形为例吧,1号图是一个什么梯形?(等腰梯形)虽然这个等腰梯形是一个轴对称图形,但是……不是每个梯形都是轴对称图形,比如6号梯形还有我手里的这个梯形,他们都不是轴对称图形。看来一般的梯形不是轴对称图形,只有等腰梯形才是轴对称图形?好了,我的话说完了,剩下的图形你们来说吧。
完成想想做做2
1、我给大家又带来了一些美丽的图形。下面的图形都是轴对称图形吗?是轴对称图形的在下面画“√”。独立完成,指名回答,你来说一说哪些图形是轴对称图形。
2、出示第一个图形。这个图形有几条对称轴呢?四人一组讨论。指名回答,那你能把它画出来吗?和老师画的一样吗?其他的两个图你能找到他们的对称轴吗?
3、学生独立完成第二、第三个图形。集体交流。
4、第二个图你找到了几条对称轴?第三个呢?
完成想想做做第4题。
1、出示前3个图形,先仔细观察题中的三个图分别是什么图形?如果学生说第一个图形是三角形,要追问是什么样的三角形,(等边三角形又叫正三边形)如果学生说第三个图形是五边形,谈话:这个图形不是普通的五边形,它的5条边相等,它是正五边形,2、这3个图形各有几条对称轴呢?你能在书上画一画吗?学生在书上画一画。
3、反馈:正三边形有几条对称轴呢?有没有不同意见的?是这样吗?那正四边形呢?对吗?正五边形呢?
4、教师手指着黑板,正三边形有3条对称轴,正四边形有4条对称轴,正五边形有五条对称轴。你发现了什么?(正几边形就有几条对称轴)
5、根据这个结论,你能知道第四个图形正六边形有几条对称轴吗?我们一起来看看是不是六条。正八边形呢?
四、课堂总结
今天这一节课,我们主要学习了轴对称图形。其实,大自然对于轴对称的创造远远不止这些。仰望蓝天,俯瞰大地,拥有生命的地方何处没有轴对称的足迹。看那花丛中飞舞的蝴蝶和蜻蜓,那翱翔天际的大雁和白鸽。就让我们在幽雅的音乐声中做一回小小设计师,设计一个轴对称图形。完成书本63页想想做做第5题。
教学反思:
学生在一年前已经学习过了轴对称图形,有的学生可能已经遗忘。所以课的一开始,设计了教学复习,可以引导学生对已有知识的回忆,调动其已有的知识储备,特别是教师画对称轴的画法为学生画对称轴做了示范。这节课重点研究对称轴的画法,使学生明确了学习目标,以集中学生的注意力。
在新授的内容中,首先让学生通过折纸发现长方形有两条对称轴,然后以小组合作的形式研究怎样画长方形的对称轴。这样的程序可以引导学生由易到难,由直观到抽象进行思考。教师对可能出现的情况作了预测,以便在不同情况下实现难点的突破。教师的示范作图和必要的讲解使学生对对称轴有了更加深刻的认识。
在教学试一试中,先放手让学生尝试折纸和作图。这样做是必要的,也是可能的。在评议时关注后进生的认知状况,启发他们通过操作提高认知水平。
在练习的这个环节中,练习的操作程序清楚,而且题目讲解到位。
当然在教学过程中,教师有很多学具准备的不够充分,比如为学生准备的长方形纸和正方形纸太小,以致于在教学反馈时,坐在下面的学生根本看不到上面学生展示的作品,其实教师这时可以使用事物投影来展示学生的作品。并且多让学生说说自己的想法。
在整个教学过程中,课堂的气氛非常的沉闷,没有平时的课堂氛围好,经教研员分析是教师对学生的正面的,积极的评价太少,导致学生的回答问题的积极性不高。在上完课之后,我努力尝试了积极评价学生的回答,果然有不同反响。看来年轻教师在平时的教学活动中要多多向有经验的教师学习,平时多上一些教研课,这样才能提高自己的课堂教学能力。
教学目标:
1、通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;
2、掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴
3、培养和发展学生的实验操作能力,发现美和创造美的能力。
重点难点:
会利用轴对称的知识画对称图形。
教学方法:
1、创设情景,引发思维。
2、组织讨论,深化思维。
3、加强练习,发展思维。
预习作业:
1、欣赏P1的图片,你发现了这些图形有什么相同点和不同点?
2、同桌互相说说什么样的图形叫作轴对称图形?
3、仔细观察例1中的图形,你发现了什么?你知道怎么画对称图形吗?
4、试着在例2的格子图片上画一画
5、你能用预习到的知识用纸来折、剪出一个轴对称图形吗?
教学过程:
一、复习引入
1、轴对称图形的概念
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
2、通过例题探究轴对称图形的性质
二、例题1
你能发现什么规律。
三、交流
教师:在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
四、教学画对称图形。
例题2
1、 在研究的基础上,让学生用铅笔试画。
2、 通过课件演示画的全过程,帮助学生纠正不足。
五、练习
1、欣赏下面的图形,并找出各个图形的。对称轴。
2、学生相互交流
你们还见过哪些轴对称图形?
用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,
(1)思考
A、怎样画?先画什么?再画什么?
B、每条线段都应该画多长?
3、课内练习一 ——第1、2题。
4、课外作业: 通过丰富的轴对称图形与轴对称的实例,让学生欣赏并体会轴对称,发展学生的审美能力、鉴赏能力,更激发了学习数学的兴趣
5、《新课程标准》强调,动手实践,自主探索与合作交流是学生进行有效的数
学学习活动的重要方式。教学中要鼓励每个学生亲自实践,积极思考,体会活动的乐趣,在乐学的氛围中,培养学生动手能力,并学会且应用新知。
板书设计:
轴 对 称
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
一、教学目标
(一)知识与技能
会画一个图形的轴对称图形,掌握画图的方法和步骤:先画出几个关键的对称点,再连线。
(二)过程与方法
通过观察、操作等活动,能在方格纸上补全一个轴对称图形。
(三)情感态度和价值观
让学生在探索的过程中进一步增强动手操作能力,发展空间观念,培养审美观念和学习数学的兴趣。
二、教学重难点
教学重点:掌握画图的方法和步骤。
教学难点:能在方格纸上画出轴对称图形的另一半。
三、教学准备
方格纸、课件。
四、教学过程
(一)复习导入
教师:同学们,我们昨天认识了轴对称图形,谁能说说它有什么特点?
预设:对应点到对称轴的距离相等。
(二)探索新知
1.画出轴对称图形。
教师:根据对称轴,补全下面的轴对称图形。
教师:要想顺利的画出另外一半的图形,你有什么办法呢?根据是什么?
(小组讨论,全班交流)
预设:我们刚刚学习了轴对称图形的对称点的特点,可以利用这个方法来画。
教师:很好,怎样来找点呢,所有的点都找吗?
预设:不用,只要数出关键点到对称轴的距离;在对称轴的另一侧点出关键点的对称点;顺次连接描出的各个点即可。
教师:谁能来展示一下你画出的轴对称图形的另一半?
学生展示自己的作品。
2.探究结果汇报。
教师:同学们,今天我们学习了哪些知识?
预设:在方格纸上画出轴对称图形的另一半时,先确定对称轴,找出关键点,数出关键点到对称轴的距离,然后点出关键点的对应点,最后依次连接各个对应点,就可以画出轴对称图形的另一半。
教师:你能简要概述一下上面画轴对称图形另一半时的步骤吗?
学生:确定对称轴后,一找关键点;二数出距离;三点对应点;四连线。
设计意图
引导学生思考:补全轴对称图形的方法是这节课的难点,在学生充分的讨论后,通过学生的实践来总结出方法,进行提炼,学生记忆的会更深刻。
一、教学目标:
1、学生通过观察、操作,初步感知轴对称现象。
2、让学生能在方格纸上画出简单的轴对称图形。
3、通过观察操作活动,发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美,增强学生学习的兴趣。
二、教学重点:
观察操作,初步感知轴对称现象。
三、教学难点:
结合实例感知轴对称现象。
四、教具准备:
实体标本:美丽的蝴蝶、黄绿色的蜻蜓、红艳艳的枫叶及京剧脸谱等图形
五、学具准备:
图画纸、彩色纸、剪刀、实体标本、树叶若干片、胶水若干瓶、图形、画有等距离点子的方格纸。
六、教学过程:
观察激情:
教师出示实物标本:美丽的蝴蝶、黄绿色的蜻蜓、红艳艳的枫叶及京剧脸谱等图形。这些昆虫标本、树叶及图形好看吗?学生被这些鲜艳的色彩、美丽的图案吸引住了,异口同声地说:“很美,很漂亮”。“他们有什么特征?”生:“两边的形状是一样的”。“你在日常生活中还见过类似特征的东西吗?”同学们纷纷举手抢答,教师根据学生的回答(如飞机、剪刀、花瓶、黑板、镜子等)把这些图形贴或画在黑板上,接着说:“今天我们一起来认识、研究这类图形有什么共同的特征,通过你们自己动手、动脑学会一种新本领,并运用你学到的新本领设计出许多更多、更美的东西和图案,使我们的生活变的更丰富,美丽。”
操作明理:
剪剪、折折、发现特征。
(1)指导学生把图画纸对折,如左图画出小树图。用剪刀沿图案剪下来,打开观察。
(2)自己在用一张彩色指对折,在折好的一侧画出自己想画图形的一半,在剪下来打开(有的是一朵花、有的是一片树叶或各种装饰图案等)教师问:“这些图形虽各不相同,但它们有一个共同的特征,你能找出来吗?”(两半图形完全相同,大小一样)。
(3)请学生把打开的两半、再沿折痕对折,你又发现了什么?(两半完全重合)
(4)教师把印有下列图案的工作纸、分别发给每个小组,要求照刚才的方法对折观察,讨论总结这些图形也有什么特征。
师生共同概括出:如果把一个图形沿着一条直线对折过来,在直线两边的图形完全重合,这种图形就是轴对称图形,折痕所在的这条直线是这个图形的对称轴。
强化新知
(1)研究讨论刚才同学们举例说出的图形(飞机、剪刀。.。.。.等)是不是轴对称图形?为什么?
(2)教师出示下列图形,引导学生思考:
那些图是轴对称图形?如何标准地找出它的对称轴。
(把图形对折,如果两边能完全重合,便是轴对称图形,折痕就是这个图形的对称轴)
引导发现,拓开思路。
学生说一说生活中的那些东西是对称图形?你能找出蜻蜓、树叶、蝴蝶、北京脸谱的对称轴吗?使学生了解对称在生活中的应用性。
运用提高、发展思维。
(1)比一比谁用树叶拼成的轴对称图形最多、变化多。
(2)下列图形是轴对称图形吗?是轴对称图形的请画出对称轴?
(课本68页的做一做)
(3)小猴不小心,把小花猫漂亮的照片污损了一部分,你能想办法帮帮小猴把污损的部分恢复原样吗?
(4)比一比,谁在方格纸上设计的轴对称图形最美,(选佳作贴在黑板上,及时反馈、评价、欣赏)。
课堂总结
什么是轴对称图形,怎样准确地找出它的对称轴,这就是我们今天学到的新本领。轴对称图形真的很美丽,因此被广泛应用于服装、家具、交通工具、建筑等各方面的设计中。希望大家能运用今天所学的知识把我们的环境装扮得更美丽。
反思