在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?下面是整理的分数乘法教案人教版【优秀6篇】,如果能帮助到您,小编的一切努力都是值得的。
本课是在学生学习了分数乘法单元中简单的求一个数的几分之几是多少的分数乘法应用题的基础上教学的。这一类实际问题比基本的求一个数的几分之几是多少的应用题的数量关系稍复杂,题目所求的数量不是已知的分率所对应的数量,而是与这个分率有关的另一个数量,所以它是基本的分数乘法解决问题的发展。因此在教学中就要引导学生抓住关键句,找出解题的数量关系式。
从观察线段图入手,让学生说说从图上可以知道些什么,再让他们通过比较,选出有用的条件自己编题、解答。在这一过程中,训练了学生观察和分析线段图的能力,同时,通过选择有用的条件进行编题,不仅使学生的思维能力得到强化,也让他们在数学学习上获得一种满足感,调动学习的积极性。再通过分析自己的算式,说出题目中的单位“1”和算式所运用的数量关系,使学生的知识得以巩固,也为后面学习例1作了很好的铺垫。
“学校花坛里有84棵花,其中1/6是月季花,月季花有多少棵?”这一类问题由于可以直接利用一个数乘分数的意义来进行列式,学生比较容易掌握。但是形如“一种毛衣,原价56元,现在的价钱降低了2/7。降低了多少元?”这样的问题,就其表述形式而言与一个数乘分数的意义有一定的距离,学生理解时有一定的困难。因此在本课的练习中我加强了语言的转换练习,让学生用“谁是谁的几分之几”的句式来表述“皮球的个数比足球多2/5、实际用水量比计划节约1/9、实际产量增加2/7、梨树的棵数比桃树少1/4”这一些句子,学生在表述的过程中自然体会到了各个分数的意义,对于单位“1”的理解愈加到位,对分率与分率的对应量理解到位。从课的实施来看,效果还是挺不错的。
有关分数实际问题的解答,我觉得理解已知条件中分数的意义(也就是我们通常说的关键句),在此基础上写出数量关系式应该是解决这一类问题的关键所在。怎样突出这一关键点,我想安排一节补充课时,让学生根据关键句画图,通过物的操作活动透彻理解分数的意义,并写出多个数量关系我认为很有必要。这也是整个有关分数的实际问题解答的奠基工程,应该在我们的教学中得到足够的重视,并应在平时的教学中反复练习,我想这对于后续的教学大有裨益。
在教学新课的过程中,先让学生通过比较,找出例题与复习题的相同与不同之处,接着再自己尝试解答。学生解答的时候,感觉做起来很得心应手,三下两下就做好了,而且有些学生用75+75×4/5做,也有一些用75×(1+4/5)做。此时,我先让同桌间相互交流想法说说自己为什么要这么做,每一步表示的是什么意思……仔细观察一下学生,发现他们都很愿意把自己的想法告诉同桌,有些同桌做的方法一样,俩人都争着要先讲;有些用的方法不一样,俩人就一起在研究、比较。在初步的交流后,再进行全班反馈。
由于刚才练习过,学生说起来还算流畅,如分析75×表示的是什么?后面为什么还要用75+75×4/5,运用的是哪个数量关系?第二种解法中1+4/5又表示什么?为什么要先求1+4/5,最后为什么要用乘法来算时,学生基本能答到点上。这一过程让学生感受到解答应用题,不仅要会解答,更要会分析。
课上除了老师问学生答之外,小组合作形式也比较单一:学生相互交流说想法、同桌讨论等,几次一来,老师和学生都感觉单调无味。因此,在平时,除了采取同桌合作、小组合作之外,我们还可以根据教学内容,适当地采取学生与教师合作或学生与电脑合作等,让学生在丰富的合作中感受学习数学的乐趣。同时,在组织学生进行合作之前,应给学生留出独立思考的时间,在此基础上的合作学习才有意义,才会让学生在合作学习中发表出自己的观点
在教学中,教师应多联系实际,培养学生的应用意识,特别是本节课,学习的是“稍复杂的分数应用题”,也就是要求学生“解决实际问题”,但在实际教学中,给学生的感觉只是在一味地做题目,而不是在运用课上所学的知识去解决一些实际问题。此时,如果出示和学生生活学习相联系的题目,如:我们班有54人,其中男生占了,女生有多少人?学生的积极性一定会有所提高。总之,教师要善于从学生地生活实际入手,抽象得出数学知识,再回到实际生活中加以运用,不论在教学活动的哪个环节,都注意与现实生活紧密联系,使学生真正切切感受到生活中有数学,生活中处处需要数学。
一、单元分析
本单元教材是在学生掌握了整数乘法,分数的意义、性质,以及分数加、减法的计算等知识的基础上进行教学的。内容包括分数乘法、利用分数乘法解决问题、倒数的认识。这些内容都属于分数中的基本知识和技能。利用这些知识不仅可以解决有关的实际问题,而且也是后面学习分数除法,以及百分数知识的重要基础。
二、单元学习目标
1.建立分数乘法的原型,掌握分数乘法的计算方法,能够比较熟练地进行计算。
2.理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
3.会利用分数乘法解决一些实际问题。
4.使学生理解倒数的意义,掌握求倒数的方法。
三、单元课时总数:9课时
课题:分数乘整数1课时上课时间:年月日
教材分析
这部分教材是在已学的整数乘法的意义和分数加法计算的基础上进行教学的。分数乘整数的意义和整数乘法的意义相同,只是这里变成了分数。因此,教材通过人跑一步相当于袋鼠跳一下的2/11。问人跑3步的距离是袋鼠跳一下的几分之几?这一情境来让学生理解什么样的问题可以用乘法来解决。在此基础上再进行分数乘整数的计算方法的。学习。通过分数加法来进一步学习分数乘整数的计算方法。
学情分析
学生已学过整数乘法的意义,约分和分数加法计算。学生可以利用分数加法导出分数乘整数时只需把分子和整数相乘的积作分子,分母不变。在此基础上总结出分数乘整数的计算方法。学生在刚学习分数乘法时可能会有时想不到先约分。所以教师在教学时在这方面还要加以强调。
教学目标
1、使学生理解分数乘法的原型,掌握分数乘法的计算方法,能够正确地进行计算.
2、培养学生的计算能力。
3、激发学生学习兴趣,热爱学习数学。
教学过程备注
活动一:创设情境,初步理解分数乘法的原型
教师出示例1:人跑一步的距离相当于袋鼠跳一下的。人跑3步的距离是袋鼠跳一下的几分之几?
让学生审题后独立试做。
学生可能会出现以下两种做法:
(1)学生用连加法列式
(2)用乘法列式
借助于分数加法来理解理分数乘法的原型。
活动二:教学分数乘整数的计算方法
1、师:++和3都是求3步的距离是袋鼠跳一下的几分之几。你又都是怎样计算的呢?
全班交流,感觉分数乘整数的计算方法。
总结分数乘整数是怎样计算的:用分数的分子和整数相乘的积作分子,分母不变。
2、教学例2:6=
让学生试做,然后教师强调计算时能约分的可以先约分,再计算。教师板书。
活动三:反馈练习
1、完成9页中的做一做。
教师注意强调学生的书写格式以及能约分的要先约分。
注意体会在什么情况下用分数乘法来解决问题。
2、完成练习二中的1、2题。
活动四:质疑总结。
设计说明
本节课是在学生学习了分数乘法的意义和计算方法的基础上进行教学的。围绕教学重点,以探究为主线设计教学过程,通过观察、对比、讨论、交流来理解分数乘法的意义,探究分数乘法的计算方法。本节教学在设计上主要有以下两个特点:
1.重视数形结合在学习中的作用。
数形结合是学生获取数学知识的有效手段之一,它能促进学生对抽象数学知识的理解。上课伊始,就充分地调动了学生动手操作的积极性,通过画图的方式初步感知一个数的几分之几是多少;在新课的教学中,再次利用数形结合的方法,帮助学生在自主探索和合作交流的过程中理解分数乘法的意义并获得广泛的数学活动经验。
2.注重从不同的问题情境中引导学生从不同的角度理解分数乘法的意义。
在教学过程中从生活情境中提出不同的问题,引导学生根据已有的知识经验或画图法去解决问题,从中理解分数乘法的意义。
课前准备
教师准备 ppt课件
学生准备 圆形卡片
教学过程
第1课时 求一个数的几分之几是多少
⊙创设情境,激趣导入
1.动手操作。
(1)你能从桌面上的12根小棒中拿出它的吗?呢?
(2)说一说你是怎么想的。
2.引导发现。
从刚才的操作中,你发现了什么?
3.交代学习目标。求一个数的几分之几是多少。
设计意图:通过动手操作,使学生初步感知分数乘整数的意义,为理解整数乘分数的意义作铺垫。
⊙类比推理,明确意义
1.获取信息,提出问题。
课件出示问题:奇思早上吃了6块饼干,笑笑吃的饼干数是奇思的,淘气吃的饼干数是奇思的。
(1)从题中你获得了哪些数学信息?
(2)你能提出哪些数学问题?
预设
①笑笑吃了多少块饼干?
②淘气吃了多少块饼干?
……
2.分析、解决问题。
(1)讨论解题策略。
师:要求笑笑吃了多少块饼干,这道题应该如何解答呢?请大家在小组内讨论、交流一下。
(学生独立思考,小组交流)
(2)学生试做。
(指导学生通过画图的方法帮助思考)
(3)汇报,并说出思考过程和解答方法。
方法一
生:笑笑吃的饼干数是奇思的,也就是说把奇思吃的6块饼干看作单位“1”,再把单位“1”平均分成2份,其中的1份是笑笑吃的饼干数。
师:说得真好!把6块饼干看作一个整体,6块饼干的是3块饼干。
方法二
生:把每块饼干都分成2个,6块饼干的就相当于6个,也就是3块饼干。
师:这也是一个很好的方法。我们知道了6块饼干的是3块饼干。
师:那么这道题应该如何列式计算呢?(6个列式为6×)
设计意图:引导学生借助“画图”的方法来理解数学问题,得到解决数学问题的策略的方法,渗透了数形结合思想,让学生通过实践得出“画图”是一种很好的解决问题的方法。
3.拓展分数乘整数的意义。
师:综合以上两种方法,你们有什么发现?
1、化肥厂生产化肥120吨,运走了3/4,还剩多少吨?
2、一辆汽车每小时行50千米,4/25小时行多少千米?
3、兰兰读一本书,第一天读了全书的1/3,第二天读了余下的3/4,第二天读了全书的几分之几?
4、一个三角形底边长12厘米,高是底的2/3.这个三角形的面积是多少平方厘米?
5、某校四年级有学生240人,其中男生占3/5,女生有多少人?
6、某筑路对修一条240米的路,第一天修了这条路的1/3,第二天修了第一天的1/4,第二天修了多少米?
7、有一摞木板,共有96张,第一次用去了它的3/4,第二次用去了余下的1/6,第二次用去了多少张?
8、甲堆煤54吨,用去了它的5/9,又用去了余下的5/6,(1)又用去了多少吨?(2)还剩多少吨?
8、商店运进一批苹果共20箱,卖了它的3/5,又卖了余下的1/2,又卖去了多少箱?
9、一根木棒4米,用去了3/4,又用去3/4米,还剩多少米?
10、蜂蜜中糖分含量约占3/4,5/8千克的蜂蜜中含糖多少克?
11、一本故事书120页,小丽第一天读了全书的1/6,第二天读了余下的1/4,第三天应从第几页读起?
12、一杯糖水2千克,糖占1/5,水有多少克?
13、一个玩具原价40元,七折出售,现价多少钱?
14、一年一班负责操场一半的卫生清扫,第一小组完成了3/4,余下的由第二小组完成,第二小组完成了操场的几分之几?
15、一杯盐水4千克,盐占1/6,水有多少千克?
16、一根木棒4米,用去了3/4,又用去2/3米,还剩多少米?
17、一杯盐水,盐有5克,水有40克,盐占盐水的几分之几?水占盐水的几分之几?
18、手工小组要做100面小旗,已经做了1/4,又做了余下的2/5,又做了多少面?
19、有一根10米长的绳子,用了4/5,又用去了余下的4/5,又用去多少米?
20、有100克水,20克糖。糖占糖水的几分之几?水占糖水的几分之几?
新世纪小学数学五年级下册第一单元是《分数乘法》,本单元学习的主要内容有:分数乘整数、分数乘分数以及解决有关简单的实际问题。其中分数乘法(一)的主要内容是求几个相同分数的和,将分数乘法与整数乘法沟通,并探索分数乘整数的计算方法;分数乘法(二)的主要内容是求一个数的几分之几,将分数乘整数的意义加以扩展;分数乘法(三)的主要内容是分数乘分数的意义及计算方法。在教学如何引导学生理解分数乘法的意义时,我进行了一些思考。
一、分数乘法的教学中,在书写顺序中应该不区分被乘数与乘数。
小学数学第一学段学习乘法的认识时就取消了乘数和被乘数的区别,3×5既可以解释为3个5,也可以解释为5个3,学生借助具体情境认识到乘法是几个相同加数的和的简便运算。
本册教材第2页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?
教学时,通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,理解题目的意思就是求3个1/5的和是多少?),让学生列式可以是1/5×3也可以是3×1/5。然后运用分数乘整数的意义解释计算的过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。
又如:教材第5页:小红有6个苹果,淘气的苹果数是小红的1/2,淘气有多少苹果?
教学时,通过直观图引导学生理解题目的意思后(6个苹果的1/2是3个苹果),要有意引导“求淘气有多少苹果,就是求6的1/2是多少?”再通过另一种解决问题的方法:把每个苹果都平均分成2份,淘气是6个1/2,也就是6×1/2或1/2×6,从而用6×1/2或1/2×6两种列式方法解决了问题。最后,再引导学生比较两种不同的理解,从而拓宽了分数乘法的意义。也让学生初步体会到求6的1/2是多少?可以用6×1/2解决也可以用1/2×6解决。
二、注意让学生在具体的情境中理解分数乘法中隐藏的数学意义。
书写顺序中不区分被乘数与乘数,更要求我们在教学中一定要注意让学生在具体的情境中,理解情境描述中隐藏的数学意义!因此,通过具体情境,来呈现对分数乘法意义的多种解释,帮助学生理解分数乘法的意义则显得重要。如:上面所讲教材第2页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?教学时,一定要让学生明白是求3个1/5的和是多少?,虽然,学生列出1/5×3或3×1/5解决了问题,但一定要让学生联系本题情境理解算式所表示的意义。
又如:刚才所举的例子:小红有6个苹果,淘气的苹果数是小红的1/2,淘气有多少苹果?当学生用6×1/2或1/2×6解决了问题后,一定要有意让学生明白:本题情境可以理解为求6的1/2是多少?从而让学生体验到求一个数的几分之几是多少可以用乘法计算。
三、要让学生从多角度理解分数乘法的意义
在避开具体的情境下,要让学生从多角度理解分数乘法的意义。如:1/5×3(3×1/5)表示的意义可以是求3个1/5的和是多少?求1/5的3倍是多少?或者把3缩小到原来的1/5实际上就是求3的1/5是多少?等。
又如:求3的1/5是多少?列式解答可以是1/5×3也可以是3×1/5。
关于分数乘法的以上解释,并不是哪一种解释是正确的,重要的是对于一个数学概念,我们应该尽可能多地让学生认识到不同的解释,这对于发展学生的数学概念是非常有益的。
例2教学稍复杂的求一个数的几分之几是多少的问题。是在例1理解和掌握了解决求一个数的几分之几是多少的问题的思路与方法的基础上学习的。本节教学内容是运用分数乘法的意义及计算解决实际问题。
因为这类问题的数量关系比较特殊,而用线段图可以比较清楚的表示出数量之间的关系。因此教学中充分运用这一工具,帮助学生理解题意,分析数量关系。从会看线段图入手,逐步学会画出线段图分析数量关系。
教学中要抓住关键的句子,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几,再根据分数乘法的意义解答。从而帮助学生理解和掌握解决这类问题的基本思路,同时为后面用分数除法解决问题奠定基础。
在备课过程中,重点抓住了整体与部分的比较关系,即知道了一个部分量是总量的几分之几,求另一个部分量的问题,还着重讲解解题的两种方法。从而在教学过程中思路清晰,教学重点突出。在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的意义解答。在教学中,我强调以下几点:
⑴让学生用画图的方式强化理解求一个分数的几分之几用乘法计算。
⑵强化分率与数量的一一对应关系。并根据关键句说出数量关
系。
⑶帮助学生理解"一个数的几分之几"与"一个数占另一个数"的几分之几的不同。
对稍复杂的分数应用题,通过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的能力。通过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。
教学中也存在一些不足之处:
1、整节课的设计都是以让学生自己动手画图辅助,然后根据线段图找到解题方法,整个过程都是以学生为主自己动手探究的过程。但因为自己没有放手给学生,导致这个过程还是教师讲多,学生练少。
2、在教学过程中,时间把握的不是很好,让学生画图时间过长,练习过程给的时间太少,达不到锻炼的效果。在这一方面,以后要多加注意调动学生的积极性和参与性。
3、对于学困生要加强怎样找单位“1”的训练,并加强根据关键句说出对应关系和数量关系的训练