平行四边形的面积教案最新9篇

作为一名辛苦耕耘的教育工作者,常常要写一份优秀的教案,编写教案助于积累教学经验,不断提高教学质量。那么问题来了,教案应该怎么写?这次帅气的小编为您整理了平行四边形的面积教案最新9篇,希望大家可以喜欢并分享出去。

数学《平行四边形的面积》教案 篇1

教学目标:

(1)通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积,培养学生初步的逻辑思维能力和空间观念。

(2)能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。

教学重点:通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积。

教学难点:能灵活运用平行四边形的'面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。

教学准备:教具、投影。

教学过程:

一、复习准备:

1.平行四边形、三角形、梯形的概念。

2.平行四边形、三角形的性质。

3.各图形的对称情况。

4.图形的大小用面积来表示。 (引人新课)

二、新授

1.投影,并观察,填书本P1的空格

2.操作:用割补法把平行四边形拼成长方形。

3.量一量长方形的长和宽与平行四边形的底和高有怎样的关系?

4.得出:

长方形的面积= 长 × 宽

平行四边形的面积=( )×( )

5.怎样计算下面图形的面积?

平行四边形的面积教案优秀 篇2

一、教学目标

(一)知识与技能

让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的实际问题。

(二)过程与方法

通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

(三)情感态度和价值观

通过活动,培养学生的探索精神,感受数学与生活的密切联系。

二、教学重难点

教学重点:探索并掌握平行四边形面积计算公式。

教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。

三、教学准备

平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。

四、教学过程

(一)创设情境,激趣导入

1、创设情境。

(1)呈现教材第86页单元主题图。(PPT课件演示)

平行四边形的面积教学设计 篇3

一、教学目标:

1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。

2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。

3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,发展推理能力。

4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。

二、教学重点、难点及关键点剖析:

1、重点:平行四边形面积公式的推导及应用。

2、难点:理解平行四边形面积计算公式的推导过程。

三、教具、学具准备:

平行四边形纸片、剪刀及电脑课件、

四、教学过程:

一、创设情境,导入新课

猪八戒和孙悟空西天取经回来后,就回到高老庄种起地来,可是孙悟空的地在猪八戒家的旁边,猪八戒的地却在孙悟空家的旁边,它们都觉得干活时很不方便。于是它们商量把地换一下。可是孙悟空的菜地是长方形的,猪八戒的菜地是平行四边形的,它们都在想这样交换公平吗?同学们,你们说这样交换公平吗?我们怎样才能知道这样交换是否公平呢?

生:算出这两块地的面积,比比就知道了。

师:那长方形的面积怎么算呢?

生:长方形的面积=长×宽

师:平行四边形的面积怎么算呢?

生摇摇头。

师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。(板书课题)

齐读学习目标:

1、通过操作,能推导出平行四边形的面积计算公式。

2、会运用平行四边形的面积计算公式解决实际问题。

二、自主学习

在下面的方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。)

小组讨论:(1)仔细观察、比较表格中的数据,你发现了

(2)猜想:平行四边形的面积=_________________________

三、动手操作,验证猜想

(1)小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?(把平行四边形转化成长方形或正方形,必需沿着平行四边形的高剪)

(2)以小组为单位进行剪拼。

(3)指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。

(4)讨论:

A、平行四边形转化成长方形后面积变了吗?为什么?(没有,因为它的大小没变),(物体的表面或封闭图形的大小,叫做它们的面积)

B、转化成的长方形的长相当于原平行四边形的(),转化成的长方形的相当于原平行四边形的()。

(6)交流汇报

板书:长方形的面积=长×宽

↓ ↓ ↓

平行四边形的面积=底×高

师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h,也可以写成S=ah或S=ah(师板书)

四、当堂检测

1、师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,那现在你们会利用公式解决问题了吗?

出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?

学生独立完成,并展示学生作业。

2、计算下面平行四边形面积,列式正确的是:()

A:8×3B:8×6C:4×6D:4×3

通过做此题,你想提醒大家注意什么?

3、你能想办法求出下面这个平行四边形的面积吗?

五、拓展提升

下面图中两个平行四边形的面积相等吗?它们的面积各是多少?

1.4cm

2.5cm

通过做此题,你发现了什么?

六、课堂小结

说说本节课,你收获了什么?

七、板书设计:

平行四边形的面积

长方形的面积=长×宽

↓ ↓ ↓

平行四边形的面积=底×高

S=a×h

=ah

=ah

平行四边形的面积教学设计 篇4

【教学目标】

1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,理解和掌握平行四边形的面积计算公式,能正确求平行四边形的面积。

2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较活动,初步认识和使用转化的方法,发展学生的空间观念。

3、培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

【教学重点、难点】

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

关键点:通过引导学生提出假设——动手操作——推导——概括的步骤开展探究活动,利用知识迁移及剪、移、拼的实际操作来分解教学难点即平行四边形面积公式的推导。关键是通过“剪、移、拼”将平行四边形转化成长方形后,找出平行四边形底和高与长方形长和宽的关系,及面积不变的特点,从而理解平行四边形面积的推导过程。

【教具、学具准备】

多媒体课件,平行四边形纸片三个、直尺(三角尺)、剪刀、平行四边形图片一个。

【教学过程】

一、创设情境,抽取方法、导入新课

1、师:同学们,从今天开始,我们来研究有关图形面积的知识。我们已经学过了哪些图形面积的计算方法?怎么计算?(学生回忆、回答)

师:老师今天也带来了两个图形,但并不是规则图形,谁能帮老师看看哪个图形的面积大?看谁能最快解决。

学生思考、回答:

(1)数格子的方法:一样大。

(2)把第二个图上面凸出的小正方形剪下移到下面的空格处,拼成长方形,两个长方形完全相同,所以面积一样大。

动画演示割补的过程。

师:这个方法巧妙吗?通过割补,把两个不规则的图形转化成了我们学过的长方形,从而可以快捷顺利地比较它们的面积——这种方法在数学上叫做“割补——转化”法。“转化”是数学上的一种非常重要的思想,是解决图形问题的一个法宝,它能帮助我们解决好多的数学问题呢,你们喜欢这种方法吗?

既然大家都喜欢这种方法,那么我们今天就利用这个方法来研究一个新图形的面积:

这是个什么图形?(平行四边形)板书课题。

二、应用方法,动手操作,探究新知

1、预设问题:

怎么就能计算出它的面积呢?(学生思考1分钟。)为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。

2、探究公式:

(1)出示问题:

师:先看老师给大家的几个提示(师读提示):

友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:

①平行四边形可以转化成学过的哪种图形?

②平行四边形的底和高分别与转化后的图形有什么关系?

③怎样通过转化后的图形推导出平行四边形的面积计算方法呢?

(学生在独立思考的基础上进行合作探究)

(2)现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?比一比哪个小组最快研究出来。

(3)小组探究。

(4)组间展示交流:

师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线剪的?)

师:谁还有不同的剪法?

动画展示割补——转化的过程:

(其中第三种方法学生一般想不到,教师可以展示提出,简单说明,以开阔学生的思路。)

(4)师生交流提炼,形成板书:

师生总结:不管利用哪种割补方法,我们都能把平行四边形转化为什么图形?(长方形),并且同学们都已经看出:这个长方形的长就等于平行四边形的底,长方形的宽就等于平行四边形的高。根据长方形面积的计算方法,我们就可以得出平行四边形面积的计算方法:

师:计算平行四边形面积,必须知道什么?(底和高,缺一不可。)

3、教学例1:

师:我们利用这个成果来解决一个问题好吗?

出示例1:

学生回答,教师板书:S=ah=6×4=24(cm2)

4、巩固小结:

通过这节课的研究,我们发现平行四边形可以用割补的方法转化为长方形,并且我们通过长方形面积公式推导出了平行四边形面积公式:平行四边形的面积=底×高(S=ah)。大家都学会了吗?下面我们就来比一比,看谁学的最熟练。

三、分层训练,巩固内化

1、求下面的平行四边形的面积,只列式不计算:

(第三个图形计算中提问:还可以怎么计算?用12×9.6行不行?强调底与高的对应)

2、慧眼识对错:

(1)一个平行四边形的底是20厘米,高是1分米,它的面积是20平方厘米。()

(2)平行四边形的底越长,面积就越大。()

(3)下面平行四边形的面积是:8×5=40(平方厘米)()

(4)一个平行四边形的面积是36cm2,底是9cm,那么它的高是4cm。()

3、老师最近买了一辆新车,想买一个停车位,选中了一个平行四边形的,停车位的价格是每平方米5000元,老师一共需要付多少钱呢?

要计算付多少钱,需要先怎么办呢?(测量长和宽,计算停车位的面积),老师已经测量好了,(出示数据:底3米,高5米)你们帮老师算算钱数好不好?

学生计算、展示。

师:谢谢你们帮我算出了应付的钱数,我回家就可以准备了。

4、为了方便行人,某小区需要在一片绿化带中修一条平行四边形小路,路宽1.5m,同学们为小区提供了如图所示三种方案,哪种方案破坏草坪的面积最小?你想到了什么?

四、课堂小结:

师:这节课你有什么有收获?

师:今天,我们研究出了一种非常巧妙的求图形面积的方法:割补——转化法,就是把不规则的图形通过割补的方法转化为我们熟悉的规则图形来求面积,同学们都研究得非常认真,对这种方法运用的也很好,在以后的学习中我们会常用到这种方法,希望同学在以后的学习中也多动脑筋。

【板书设计】

《平行四边形的面积》教案设计 篇5

教学内容:

义务教育课程标准试验教科书数学人教版五年级上册第五单元《多边形的面积》第一课时79~81页。

教学目标:

1、使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。

2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

3、培养学生学习数学的兴趣及积极参与、团结协作的精神。

教学重点:探究平行四边形的面积计算公式,会计算平行四边形的面积。

教学难点:平行四边形面积公式的推导过程。

教具准备:多媒体课件、方格纸、剪刀、平行四边形。

教学过程:

一、情景引入,激趣导课

1、情景引入(出示课件)

随着人们的生活水平的不断提高,不少家庭都买了私家车,住在阳光小区的小明家和小刚家也各买了一辆。小明家住在小区东边,停车位在西头,小刚家住小区西边,停车位在东头,由于停车、开车不方便,于是两家商量交换一下车位,小明家的车位是长方形的,小刚家的车位是平行四边形的,这两个车位形状不一样,这样交换公平吗?要想知道是否公平,我们要知道它们的面积。

2、用数方格的方法计算停车位的面积。

⑴出示长方形、平行四边形车位图,出示方格图。

用数方格的方法数出两个图形的面积。

师:看,这是两个车位图,能直接比较它们车位面积大小吗?为了便于观察把它们旋转一下,现在用数方格的方法可以数出它们的面积吗?

生:可以。

师: 一个方格表示1m2,不满一格按半格计算,把数出的数据填在表格中(题卡)

⑵汇报、填表。

长方形

长(m)

宽(m)

面积(m2)

5

3

15

平行四边形

底(m)

高(m)

面积(m2)

5

3

15

师:15m2你是怎样数的? 生:先横着数有5格,再竖着数有 3格,3乘5等于15格,是15平方米。师:平行四边形的面积你是怎样数的? 生1:把两个半格合成一个整格,数出共有15个整格,是15平方米。 生2:数出共6个半格,6除以2是 3个整格,共15个整格 ,是15平方

米。

师:观察车位的面积一样,他们可以进行交换吗?

生:可以。 。

⑶观察表格中的数据。 ①先竖着观察你发现了什么?

长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,它们的面积也相等。

师:这说明当这个平行四边形的底和高分别与这个长方形的长和宽相等时,它们的面积也相等。

②再横着观察你发现了什么?

生:长方形面积等于长乘宽,平行四边形面积等于底乘高。(板书长方形面积公式)。

师:通过数方格我们发现这个平行四边形的面积等于底乘高,是不是所有平行四边形的面积都可以用底乘高来进行计算呢?这节课我们就来研究平行四边形面积的计算(板书课题)。

二、动手操作,探究新知。

1、联想、猜测。

长方形的面积与它的长和宽有关系,请大家猜测一下平行四边形的面积和谁有关系,有什么关系?

生:底和高,底乘高等于平行四边形的面积。

(相邻两边的积等于平行四边形的面积。)

2、归纳意见,提出验证

师:长方形面积我们会算了,能不能把平行四边形转化成长方形来计算它的面积呢?请同学们想一想,想好了同桌交流,并动手用学具试一试。

⑴学生动手操作。

⑵学生演示操作过程。

生1:沿着平行四边形一个顶点向对边做一条高,沿高剪开,剪成了一个三角形和一个梯形,把三角形平移到梯形右边,拼成一个长方形。

生2:在这个平行四边形中间做一条高,沿高剪开,剪成了两个梯形,把左边梯形平移到右边,拼成一个长方形。

生3:沿着平行四边形这一条高剪开,剪成了一个三角形和一个梯形,把三角形平移到梯形左边,拼成一个长方形。

……….

师:同学们真聪明,在操作过程中运用了一种重要的数学方法“转化”,都是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。

⑶观察几种不同的转化方法,它们有什么共同的地方?为什么沿高剪开?

生:都是沿平行四边形高剪开,平移拼成一个长方形。长方形有四个直角,只有沿高剪开,拼时才能出现直角。

⑷讨论:拼出的长方形和原来的平行四边形相比,你发现了什么?以下面的讨论题进行思考交流。

①拼出的长方形和原来的平行四边形比,什么变了,什么没变?

②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

③你能根据长方形面积的计算公式推导出平行四边形面积的计算公式吗?

⑸讨论推导出平行四边形面积公式:

长方形的面积= 长×宽

平行四边形的面积= 底×高

3、演示过程,强化结果。

师:大家刚才在操作中沿平行四边形任意几条高剪开、平移、拼都把一个平行四边形转化成一个长方形,请同学们再观察一遍(多媒体演示)。一个平行四边形有无数条高,沿任意一条高剪开、平移、拼都可以把一个平行四边形转化成一个长方形,这个长方形的面积与原来平行四边形面积相等,这个长方形的长等于这个平行四边形的底,这个长方形的宽等于这个平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形面积等于底乘高。

(刚才有同学猜想平行四边形的面积是两邻边的积,是不是这样呢?这里有一个平行四边形框架,请你拉一拉,发现了什么?邻边长度没变,面积变了,所以平行四边形面积不等于两邻边的积。)

师:从而也验证了大家前面猜想的底乘高等于平行四边形的面积是正确的,在学习中我们采用了先猜想,再转化,最后验证等学习方法,这些方法在学习中我们经常用到。

如果用s表示平行四边形面积,a表示它的底,h表示它的高,那么平行四边形的面积可以用字母什么表示?

生:s=a×h

s=ah 字母中间乘号可以省略。

师:要求平行四边形的面积必须知道什么?

生:要知道它的底和高。

通过大家共同的努力,推导出了平行四边形面积公式,下面让我们走进阳光小区,去解决一些实际问题。

4、利用公式解决例1。

例1:阳光小区中一个平行四边形花坛的底是6米,高是4米,它的面积是多少?

两人板演,其余做在练习本上。s=ah=6×4=24(m2), 6×4=24(m2)

订正:在计算平行四边形面积时,可以用字母公式代入,也可以直接列式计算,要注意面积单位。

三、反馈练习,发展思维。

1、做一做。

15m

30m

在花坛两边有两块平行四边形的草坪,请你算一算它们的面积。

25m

12m

12m

2、选一选。

2.5m

5m

沿着草坪向前走,有一个平行四边形公益广告牌,怎样计算它的面积呢?请选出正确答案,并说一说为什么。

3m 6×2.5=15(m2) ( ) 6×5=30(m2) ( )

3×5=15(m2) ( ) 3×2.5=7.5(m2) ( )

6m

3、算一算(算法可多样)。

9dm

小区阅览室新进了一批图书,要在楼梯两侧做4个图书宣传版面,这些宣传版面的面积是多少?

,

6dm

4、小小设计师。

小区要在一块长8米,宽6米的空地上建一个面积是30平方米的平行四边形观赏鱼池(底和高是整米数),如果你是设计师你如何设计?

生1: 底是6高是5。

生2:底是5,高是6。

师:有时在解决一个问题时有很多方案,我们要根据实际情况选择合适的方法解决。

四:课堂总结。

今天我们学习了平行四边形面积的计算,通过学习,你有那些新的收获呢?

五、看书质疑。

板书设计

平行四边形的面积

长方形的面积=长×宽

平行四边形的面积=底×高

s=ah

反思:

教学完《平行四边形的面积》这一课自己感触颇多,有成功中的喜悦,也有不足中的遗憾,总结本节课的教学,有以下体会。

一、成功之处。

1、联系生活,以解决小区中实际问题贯穿全课。

本课以停车位面积大小的问题,让学生引入到对平行四边形面积计算方法的探索中,通过猜测、转化、验证等得出平行四边形面积计算公式,并运用公式去解决小区中的实际问题。整节课在实际情景中学习新知,理解新知,巩固并运用新知。所创设的生活情景取材于学生的数学现实中,使学生感到亲切、有趣,使教学活动更富有生气和活力,更能使学生体验数学来源于生活,扎根于生活,应用于生活。

2、重视学生的自主探索,让学生经历数学学习的过程。

学习任何知识的最佳途径是通过自己的实践活动去发现,这样的发现理解最深,也最容易掌握。在教学活动中,我设计了三个层次引导学生进行探究新知,首先是让学生根据已有知识和经验大胆猜测,接着亲自动手操作,验证自己的猜想是否正确,最后演示过程,强化结果,让学生在数学活动中自然地发现平行四边形和长方形之间的关系,最后归纳出平行四边形面积计算公式。在这里我留给学生足够的时间和空间去思考、去动手,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,学生主人翁的地位充分展现。而我则是一个引路人,是一个参与者,合作者,真正体现《数学课程标准》的新理念。

3、渗透数学方法,发展学生的数学能力。

在本节课的教学中,我注意引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力,在探索平行四边形面积的计算方法时,先引导学生能不能把一个平行四边形变成一个长方形呢?通过操作,一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法,这样以数学思想方法为主线,让学生亲身体验和理解“转化”思想,加强了新旧知识间的联系,有助于知识的系统化。在此过程中,学生经历了数学学习的过程,不但发展了数学思维,而且提高了数学能力。

二、存在不足。

1、为了学生的思维不受限制,使孩子们的主动性得到尽可能的发挥,在探究平行四边形面积公式时,我是让学生自己发现,自己总结,但由于学生紧张,而自己的引导和激励性语言又没有及时跟上,致使个别学生操作速度慢,跟不上课堂节奏,活动氛围不活跃,这方面的组织与调控能力我还要继续加强。

2、用数方格的方法数长方形正方形的面积在前面已经学过,因此在备课中我认为学生对数长方形‘平行四边形的面积应该是轻车熟路,很快数出来,但在实际教学中发现一些学生对数平行四边形的面积方法不熟,这块内容的教学多耽误了两分钟,以致于后面的练习有些仓促。因此,备课时一定要认真备各层次的学生水平,该引导时就引导,该放手时就放手。

三、反思中的所悟。

结合新课标,如何上好数学课,当中还有许多值得自己思考的问题。通过这个课例,感悟到要上出‘活泼‘愉快’实用的课来,就要求我们教师用学生的眼光理解教材,用新课标理念处理教材,用灵活的方法调控每个环节。教学中给孩子一些问题,让他自己去找答案,给孩子一些条件,让他自己去体验,给孩子一些机会,让他自己去创新。

平行四边形的面积教学设计 篇6

教学目标:

1、探索平行四边形面积的计算方法,会运用“转化”的数学思想方法推导平行四边形的面积计算公式,会计算平行四边形的面积。

2、让学生经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展学生的空间观念,提高学生的数学素养。

教学重点:

探究平行四边形的面积计算公式。

教学难点:

充分理解剪拼成的充分理解剪拼成的长方形与原平行四边形之间和关系。

教学具准备:

平行四边形纸片、尺子、剪刀、课件

教学过程

一、谈话,揭题:

1、谈话:听过曹冲称象的故事吗?曹冲真的称大象吗?

2、揭题:平行四边形的面积。

二、探究新知:

问题(一)要求这个( )的面积,你认为必须知道哪些条件?

1、 同桌交流

2、 反馈:①长边×短边=10×7=70平方厘米

②底×高=10×6=60平方厘米

3、 引发矛盾冲突:同一个平行四边形的面积怎么会有两个答案呢?

4、 学生动手验证(小组合作)

5、 请小组代表说明验证过程

问题(二)为什么要沿着高将平行四边形剪开?

问题(三)剪拼成的长方形的面积是60平方厘米,你怎么知道原平行四边形的面积也是60平方厘米?

问题(四)是否每次计算平行四边形的面积都要进行剪拼转化成长方形来计算?如果要计算一个平行四边形池塘的面积,你还能剪拼吗?

1、 引导观察,平行四边形转化成长方形,除了面积不变外,它们之间还有其它的联系吗?

2、 推导公式:平行四边形的面积=底×高

3、 小结

问题(五)为什么不能用长边乘短边(即邻边相乘)来计算平行四边形的面积?

1、动态演示: ,引导发现周长不变,面积变大了。

2、动态演示: ,发现面积变小了

3、要求平行四边形的面积,现在你认为必须知道哪些条件?

问题(六)是不是所有平行四边形的面积都等于底×高呢?

让学生拿出各自的平行四边形,动手剪拼,看看行不行。

三、应用新知

1、 左图平行四边形的面积=?

2、解决例1:平行四边形花坛的底是6米,高是4米,它的面积是多少?

四、总结:

1、回想一下今天我们是怎样学平行四边形的面积?

2、你还想学习哪些知识呢?

数学《平行四边形的面积》教案 篇7

教学目标

教学目标:

知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。

能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。

情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。

教学重点和难点

教学重、难点:

理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。

培养学生运用公式解决实际问题的能力。

教学过程

(一)创设情境,设疑引入

谈话:出示两个美丽的花坛(课件呈现)。

提问:请大家观察一下,这两个花坛哪一个大呢

然后给出长方形的长和宽让学生计算长方形的面积。

提问:那平行四边形的面积你会算吗?从而导入新课。

(二)操作探索,获取新知

数方格感知平行四边形和长方形之间的关系

(1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)

(2)汇报交流自己的发现。

小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。

2、应用“转化”思想,引入割补、平移法

(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)

(2)精彩展示:要求边讲边操作。

提问:为什么都要转化成长方形?

为什么一定要沿着高剪开呢?

接着电脑演示其它方法,渗透割补、平移法

3、建立联系,推导公式

(1)小组合作探索:

a、原来的平行四边形转化成长方形后,什么变了?什么没变?

b、拼成长方形的长与原来平行四边形的'底有什么关系?

c、拼成长方形的宽与原来平行四边形的高有什么关系?

d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积= )

(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)

提问:用字母怎么表示呢?自学课本。

学生回答s=ah(板书)

提问:s、a、h分别表示什么呢?

提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)

(三)巩固应用,内化新知

前面的花坛题

课本第2题:你能想办法求出下面两个平行四边形的面积吗?

拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?

(四)课堂总结,深化新知

师:同学们,通过今天的学习,你有什么收获呢?

平行四边形的面积教案设计 篇8

平行四边形的面积 计划学时 1

学习内容分析

学生已经了学习长方形,正方形,三角形的面积,而本节课开始怎样计算探究平行四边形的面积,计算平行四边形的面积既是对之前学过的知识的延续又是对接下来学习梯形等面积的铺垫。因此,学好它既能对旧知识的迁移又能为今后的学习打下基础。

学习者分析

根据心理学知识该阶段的学生知识迁移能力有待提高,空间想象能力,观察能力,动手操作能力较强,

教学目标 知识与技能1、认知目标:通过学生观察、讨论、动手体验,使学生理解并掌握平行四边形面积计算公式,并能解决实际问题,培养学生小组合作能力。

2、能力目标:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

3、情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

过程和方法:合作学习,自主探索

情感态度与价值观让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

知识点 学习水平 媒体内容与形式 使用方式 使用效果

平行四边形面积的计算 还未学平行四边形面积公式,但已经学习了三角形,长方形面积公式 让同学先自己试图转化计算,然后在ppt展示平行四边形与长方形的转换过程 在ppt展示平行四边形与长方形的转换过程 使得同学更形象生动了解长方形和平行四边形之间的转换,有利于同学推导出平行四边形的面积公式

课后练习 同学们已经学习了平行四边形的面积但还未实践应用 在ppt展示练习题 在ppt展示练习题 同学更形象生动了解平行四边形公式,有利于同学的学习

教学过程

教学环节 教学内容 所用时间 教师活动 学生活动 设计意图

展示出长方形问同学这样拉回变成生命形状,生命改变了,什么没有改变 为平行四边形的讲解和本节课的内容铺垫 5分钟 展示出长方形并通过拉其一端展示出平行四边形,同时扔出疑问给同学解决,为本节课做铺垫 学生通过想象观察配合课堂进行 由生活中学生熟悉的事物引入新知,激发起学生的学习兴趣,增强了学生的探索欲望和积极性,同时为新知的学习做好了情感铺垫

让同学们通过已经学习的知识计算平行四边形的面积

同学们通过已经学习的知识计算平行四边形的面积,运用旧知识迁移的方法计算,巩固旧知识 12分钟 教师下去巡视同学做的情况,进行总结,然后再在ppt展示 学生通过已经学习的知识在小组讨论下用不同的方法计算出平行四边形的面积 这一环节充分发挥学生学习的主体性,培养学生的探索精神,为学生提供了开放的探索时间和空间,鼓励创新、发现;放手让他们去操作、去探索,使学生获得战胜困难,探索成功的体验。从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主题,体现了活动化的数学学习过程,可以有效提高课堂教学效率与质量。

通过ppt的转换总结得出平行四边形面积公式 平行四边形面积公式的推导 15分钟 教师在ppt展示各种转换方法也把长方形转换平行四边形展示出来引导同学说出平行四边形的面积 对刚刚的学习进行总结,得出平行四边形的面积 运用生动形象的课件,再一次演示其中一种方法的验证过程。并介绍平行四边形的"高"和"底"。让学生体验将平行四边形转化成长方形的过程,加深学生对图形转化的理解,并在具有挑战性的活动中激发学生参与探究活动的兴趣

对平行四边形公式进行巩固练习 同学已经学平行四边形的公式但还未实际应用 8分钟 教师根据学生所学情况在ppt展示所对应练习题 学生根据所学的知识做练习巩固知识点 通过总结,疏理知识,帮助学生深化知识的理解掌握,进一步建构完整的知识体系;另外,学生学会自我评价,互相评价,体验成功,增强学好数学的信心

课堂教学流程图

教学过程

一、情境创设,揭示课题

师:同学们,你们看老师手上拿的什么形状?如果老师现在固定这个端点,再将右边这个端点向右拉,你们想象一下,它会变成什么形状呢?

生:平行四边形

师:对了,就是平行四边形,你们在这个过程中什么改变了什么没有发生改变呢?

生:形状,角度,面积

师:那面积是变大还是变小

生:此时回答不一

教师根据学生的回答,选出本节课的研究任务,揭示课题“我们就共同研究一下,平行四边形的面积。(板书)

二、创设问题情景,引发自主探索。

1、提出问题,鼓励猜测

那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。

2、自主探究、验证猜测:

师:用剪刀把平行四边形剪成已经学习过的图形来计算他的面积,想一想你打算用什么方法来计算?

3、展示成果,互相交流

同学的计算方法不一,抽取最简单的进行讲解,引出数格子的方法,让同学们总结长方形面积和平行四边形的面积关系

指名上前演示并表述用方格图数两个图形面积的过程和方法,并展示填写的表格。

方法二:转化法

师:有什么发现?

师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?

生:长方形的长等于平行四边形的底、宽等于平行四边形的高

师:是这样吗?师课件演示解说强调平移

师:还有其他的剪拼方法吗?

4、整理结论

师:你是怎么剪的?沿什么剪的?为什么要沿高剪开?拼出的长方形和原来的平行四边形之间,你发现了什么?

提问:(1)平行四边形转化成长方形,面积变了吗?

(2)方形后的长和宽分别与平行四边形的底和高有什么关系?

(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?

师:你们觉得这几种方法有没有共同之处?

(都是沿高剪开的,都是把平行四边形转化成长方形)

课件演示,结合课件填写各部分间的相等关系。

板书:底=长 高 =宽 长方形的面积=正方形的面积

师:我们一起读一下我们发现的结论。

师:请同学们翻开书自己看书学习81页倒数第2自然段的内容。

师:你学到了些什么?

师:如果用表示S平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以写成:S=ah

三、方法应用

师:现在我们来算一下这块平行四边形草坪的面积是多少?(大屏幕中的字母全部去,换上数据底6厘米,高4厘米。)

师:这个平行四边形的面积大家会算吗?请你在自己的本子上计算一下。(生独立计算,选一个快的,正确的上台板书)

师:这个6是什么?(a),4呢?(h),那么底和高求出来的是什么?(S)。你后面用的单位为什么是平方厘米呀?

四、梳理知识,总结升华

师:这节课同学们通过猜想发现平行四边形的面积等于底乘高,并且经过验证证明了你们的猜想是正确的。对于这节课学习的内容你们有没有什么问题或不明白的地方?能说说这节课,你是怎么学习的?你有哪些收获吗?

五、课堂检测

修改建议

结合你对教学设计的想法,可以对教案模板进行修改,以便更符合你教案内容。

平行四边形的面积教案设计 篇9

【教材分析】

本节课是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第1课时《平行四边形的面积》。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上,进行教学的。教材在编排上非常重视让学生经历知识的探索过程,使学生不仅掌握面积计算的方法,更要参与面积计算公式的推导过程,在操作中,积累基本的数学思想方法和基本的活动经验,完成对新知的建构。本节课首先通过具体的情境提出计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何去解决,使学生感到学习新知识的必要性;其次,对学生进行动手操作,自主探索的培养,使学生能寻求解决问题的方法;最后,让学生归纳计算平行四边形面积的基本方法。根据学生的多种剪法,组织学生讨论这些剪法的共同特点,并比较长方形与平行四边形之间的关系,从而推导出计算平行四边形面积的公式。

【教学目标】

知识与能力目标:使学生能运用数方格、割补等方法探索平行四边形面积的计算公式,初步感受转化思想;让学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。

过程与方法目标:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思想方法解决问题的能力;创设自主、和谐的探究情境,让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。

情感态度与价值观目标:通过活动,培养学生的合作意识和探索创新精神,感受数学知识的奇妙。

【学情分析】

平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。

【教学重点】掌握平行四边形面积计算公式。

【教学难点】平行四边形面积计算公式的推导过程。

【教具】两个完全一样的平行四边形、不规则图形、小黑板、剪刀、多媒体及课件。

【教学过程】

一、创设情境,引入课题。

1、游戏:小小魔术师。教师出示不规则图形。

(1)师:你能直接计算出这个图形的面积吗?

(2)师:你能计算出这个图形的面积吗?说一说用什么方法?

(3)师:现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算 m. 长方形的面积?

2、小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)

(设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过出示复习题,唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。)

二、激趣引思,导入新课。

师:同学们,昨天早上我听校长说,学校要建一个宣传栏,其中要用一块底是5米,高是4米的平行四边形胶合板。我觉得这是一件好事,因为平行四边形是一种漂亮的图形,你们听了校长的话,想知道些什么?

生1:我想知道要花多少钱才可以做成。

生2:我想这个宣传栏建起来一定很漂亮,会把我们的校园点缀得更加美丽!

生3:我想知道这块胶合板的面积有多大。

师:我听出来了,大部分同学都想知道这块平行四边形胶合板的面积,这节课我们就来探究“平行四边形的面积”。(板书课题:平行四边行的面积)

(设计思路:教师选取发生在学生身边的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。)

三、动手操作,探究发现。

1、用数方格的方法启发学生猜想平行四边形面积的计算方法。

师:同学们回忆一下,我们以前是怎么学习长方形面积公式的?(指名复述过程)下面我们用数方格的方法来数出平行四边形的面积。

教师用课件演示:先出示一个画有方格(每个方格的面积是1平方厘米)的长方形,再将一个平行四边形放在方格图上面,让学生用数方格(不满一格的按半格计算)的方法回答问题。

(1)这个平行四边形的面积是多少平方厘米?

(2)它的底是多少厘米?

(3)它的高是多少厘米?

(4)这个平行四边形的面积跟它的高与底有什么关系?

(5)请同学们猜一猜:怎样计算平行四边形的面积?

2、引导学生把平行四边形转化为长方形,验证猜想推出平行四边形的面积公式。

我们用数方格的方法得到一个平行四边形的面积,但是用这个方法计算面积方便吗?

生:不方便。

师:既然不方便,我们能不能用更方便的方法来解决呢?

小组交流,学生讨论,发表意见。

生:用剪和拼的方法。

师:(出示一个平行四边形)这个平行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)

师:这条虚线也就是平行四边形的哪部分?(高)还记得怎样画高吗?

师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!(学生动手操作)

师:拼成长方形了吗?拼好了摆在桌面给老师看看,请两个同学来前面展示他们的作品,(指名上黑板前)说说你是怎样操作的?

(生:我先画条高,沿着高剪开,把这部分移过去,就拼成了一个长方形。)

师:怎样移过去呀?平着移到右边,这种方法我们把它叫做平移。

师:再请一个同学展示一下,他的剪法有什么不一样吗?

(生:我在中间剪的)剪成两个完全一样的梯形,可以吗?平移过去也拼成了一个长方形。 (展示学生的成果)

师:老师有几个问题,我们把平行四边形转化成了长方形,原来平行四边形的面积和这个长方形的面积相等吗?平行四边形的底和高分别与长方形的长和宽有什么关系呢?

小组讨论:

⑴ 原来平行四边形的面积和拼成的长方形的面积相等吗?

⑵ 原来平行四边形的底与拼成的长方形的长有什么关系?

⑶ 原来平行四边形的高与拼成的长方形的宽有什么关系?

师:谁来说说你的想法。它的面积没有多,也没有少,平行四边形的面积等于剪拼后的长方形的面积。(板书)平行四边形的底和高与长方形的长和宽有什么关系?我们看课件演示。(板书:底=长, 宽=高)

师:长方形的面积=长×宽,那么平行四边形的面积怎样求?

生:平行四边形的面积=底×高(板书)

师:同意吗?谁能讲一讲,为什么平行四边形的面积=底×高?结合刚才一剪一拼的过程说说。(生叙述方法)

教师小结方法指名让生叙述。

师:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=ah(板书:S=ah)。

师:现在我们可以确定当初的猜想谁是正确的?

(设计思路:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。在教学中给学生留足了自主探索的空间,最终达到学习的目的,让学生体验到成功的喜悦。)

四、实践应用,巩固提高。

师:同学们,现在你们可以算出建宣传栏要的那块胶合板的面积了吗?(学生独立完成。)

教师板书:5×4=20(平方米)

出示例1 (同桌讨论,独立完成,最后全班交流。)

教师板书:S=ah=6×4=24(平方米)

师:同学们真会动脑筋,能运用所学知识解决生活中的问题。

(设计思路:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐。)

五、分层练习, 强化应用。

1、填空。

(1)把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形( )。这个长方形的长与平形四边形的底( ),宽与平行四边形的高( )。平行四边形的面积等于( ),用字母表示是( )。

(2)0.85公顷=( )平方0.56平方千米=( )公顷

2、计算下面各个平行四边形的面积。

(1)底=2.5cm,高=3.2cm。 (2)底=6.4dm,高=7.5dm。

3、解决问题。

(1)小明家有一块平行四边形的菜地,面积是120平方米,量得底是20米,它的高是多少?

(2)一块平行四边形钢板,底8.5m,高6m,它的面积是多少?如果每平方米的钢板重38千克,这块钢板重多少千克?

(设计思路:几道练习题从易到难有一定坡度,通过练习,既巩固了本节课所学的知识,又使不同层次的学生都得到了发展,拓展了学生的思维。)

六、总结升华,拓展延伸。

1、教学小结:同学们,这节课你们学会了什么?说一说你知道哪些解决问题的方法?

(设计思路:通过“说一说”,使学生对本节课所学知识有个系统的认识,可以提高学生的归纳、总结、概括、表达等多方面的能力。)

2、课后练习

(1)、练习十五第1题,第2题。(任选一题)

(2)、解决问题:选一个平行四边形的实物,量出它的底和高,并计算出面积。

平行四边形的面积练习题

1、 填一填

(1)1平方米=( )平方分米=( )平方厘米

(2)把一个平行四边形转化成长方形,它的面积与原来的平行四边形的面积( )。

转化后长方形的长与平行四边形的( )相等,宽与平行四边形的( )相等。

(3)平行四边形的面积=( )×( ),字母公式为( )

(4)一个平行四边形的底是8.5米,高是3.4米,求其面积的算式是( )

(5)等底等高的两个平行四边形的面积( )

2、判断

(1)形状不同的两个平行四边形面积一定不相等 ( )

(2)周长相等的两个平行四边形面积一定相等 ( )

(3)知道一个平行四边形的底和其对应的高的长度就能求出它的面积 ( )

3、一块平行四边形的玻璃,底是50厘米,高是24厘米,它的面积是多少?

24厘米

50厘米

升级跷跷板

4、有一个平行四边形的面积是56平方厘米,底是7厘米,高是多少厘米?

5、一快平行四边形的菜地,底是36米,高是25米,每平方米收白菜8千克,这块地共收白菜多少千克?

6、一个平行四边形的果园,底是30米,高是15米,中了90棵梨树,平均每棵梨树占地多少平方米?

智慧摩天轮

7、已知下图中正方形的周长是36厘米,求平行四边形的面积。

8、一块平行四边形的铁皮的周长是82厘米,一条底长是16厘米,这条底上的高是20厘米,求另一条底上的高是多少厘米?

一键复制全文保存为WORD