作为一名教师,时常要开展教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。来参考自己需要的教案吧!下面是小编精心为大家整理的高一数学教案(优秀8篇),在大家参照的同时,也可以分享一下给您最好的朋友。
教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法。
教学重难点:
1、元素与集合间的关系
2、集合的表示法
教学过程:
一、 集合的概念
实例引入:
⑴ 1~20以内的所有质数;
⑵ 我国从1991~20xx的13年内所发射的所有人造卫星;
⑶ 金星汽车厂20xx年生产的所有汽车;
⑷ 20xx年1月1日之前与我国建立外交关系的所有国家;
⑸ 所有的正方形;
⑹ 黄图盛中学20xx年9月入学的高一学生全体。
结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集。
二、 集合元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写
练习:判断下列各组对象能否构成一个集合
⑴ 2,3,4 ⑵ (2,3),(3,4) ⑶ 三角形
⑷ 2,4,6,8,… ⑸ 1,2,(1,2),{1,2}
⑹我国的小河流 ⑺方程x2+4=0的所有实数解
⑻好心的人 ⑼著名的数学家 ⑽方程x2+2x+1=0的解
三 、 集合相等
构成两个集合的元素一样,就称这两个集合相等
四、 集合元素与集合的关系
集合元素与集合的关系用“属于”和“不属于”表示:
(1)如果a是集合A的元素,就说a属于A,记作a∈A
(2)如果a不是集合A的元素,就说a不属于A,记作a∈A
五、常用数集及其记法
非负整数集(或自然数集),记作N;
除0的非负整数集,也称正整数集,记作N*或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R.
练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是( )
A直角三角形 B 锐角三角形 C钝角三角形 D等腰三角形
(2)说出集合{1,2}与集合{x=1,y=2}的异同点?
六、集合的表示方式
(1)列举法:把集合中的元素一一列举出来,写在大括号内;
(2)描述法:用集合所含元素的共同特征表示的方法。(具体方法)
例 1、 用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1~20以内的所有质数组成。
例 2、 试分别用列举法和描述法表示下列集合:
(1)由大于10小于20的的所有整数组成的集合;
(2)方程x2-2=2的所有实数根组成的集合。
注意:(1)描述法表示集合应注意集合的代表元素
(2)只要不引起误解集合的代表元素也可省略
七、小结
集合的概念、表示;集合元素与集合间的关系;常用数集的记法。
教学目标
(1)正确理解充分条件、必要条件和充要条件的概念;
(2)能正确判断是充分条件、必要条件还是充要条件;
(3)培养学生的逻辑思维能力及归纳总结能力;
(4)在充要条件的教学中,培养等价转化思想.
教学建议
(一)教材分析
1.知识结构
首先给出推断符号“”,并引出的意义,在此基础上讲述了充要条件的初步知识.
2.重点难点分析
本节的重点与难点是关于充要条件的判断.
(1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件和结论之间的因果关系.
(2)在判断条件和结论之间的因果关系中应该:
①首先分清条件是什么,结论是什么;
②然后尝试用条件推结论,再尝试用结论推条件.推理方法可以是直接证法、间接证法(即反证法),也可以举反例说明其不成立;
③最后再指出条件是结论的什么条件.
(3)在讨论条件和条件的关系时,要注意:
①若,但,则是的充分但不必要条件;
②若,但,则是的必要但不充分条件;
③若,且,则是的充要条件;
④若,且,则是的充要条件;
⑤若,且,则是的既不充分也不必要条件.
(4)若条件以集合的形式出现,结论以集合的形式出现,则借助集合知识,有助于充要条件的理解和判断.
①若,则是的充分条件;
显然,要使元素,只需就够了.类似地还有:
②若,则是的必要条件;
③若,则是的充要条件;
④若,且,则是的既不必要也不充分条件.
(5)要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题逆否命题,逆命题否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立.
(二)教法建议
1.学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系.充要条件中的,与四种命题中的,要求是一样的.它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若则”形式的复合命题.
2.由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去结概念“下定义”,去体会概念的本质属性.
3.由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念.
4.教材中对“充分条件”、“必要条件”的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的概念.
教学设计示例
充要条件
教学目标:
(1)正确理解充分条件、必要条件和充要条件的概念;
(2)能正确判断是充分条件、必要条件还是充要条件;
(3)培养学生的逻辑思维能力及归纳总结能力;
(4)在充要条件的教学中,培养等价转化思想.
教学重点难点:
关于充要条件的判断
教学用具:
幻灯机或实物投影仪
教学过程设计
1.复习引入
练习:判断下列命题是真命题还是假命题(用幻灯投影):
(1)若,则;
(2)若,则;
(3)全等三角形的面积相等;
(4)对角线互相垂直的四边形是菱形;
(5)若,则;
(6)若方程有两个不等的实数解,则.
(学生口答,教师板书.)
(1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题.
置疑:对于命题“若,则”,有时是真命题,有时是假命题.如何判断其真假的?
答:看能不能推出,如果能推出,则原命题是真命题,否则就是假命题.
对于命题“若,则”,如果由经过推理能推出,也就是说,如果成立,那么一定成立.换句话说,只要有条件就能充分地保证结论的成立,这时我们称条件是成立的充分条件,记作.
2.讲授新课
(板书充分条件的定义.)
一般地,如果已知,那么我们就说是成立的充分条件.
提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系.
(学生口答)
(1)“,”是“”成立的充分条件;
(2)“三角形全等”是“三角形面积相等”成立的充分条件;
(3)“方程的有两个不等的实数解”是“”成立的充分条件.
从另一个角度看,如果成立,那么其逆否命题也成立,即如果没有,也就没有,亦即是成立的必须要有的条件,也就是必要条件.
(板书必要条件的定义.)
提出问题:用“充分条件”和“必要条件”来叙述上述6个命题.
(学生口答).
(1)因为,所以是的充分条件,是的必要条件;
(2)因为,所以是的必要条件,是的充分条件;
(3)因为“两三角形全等”“两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;
(4)因为“四边形的对角线互相垂直”“四边形是菱形”,所以“四边形的对角线互相垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“四边形的对角线互相垂直”的充分条件;
(5)因为,所以是的必要条件,是的充分条件;
(6)因为“方程的有两个不等的实根”“”,而且“方程的有两个不等的实根”“”,所以“方程的有两个不等的实根”是“”充分条件,而且是必要条件.
总结:如果是的充分条件,又是的必要条件,则称是的充分必要条件,简称充要条件,记作.
(板书充要条件的定义.)
3.巩固新课
例1(用投影仪投影.)
(学生活动,教师引导学生作出下面回答.)
①因为有理数一定是实数,但实数不一定是有理数,所以是的充分非必要条件,是的必要非充分条件;
②一定能推出,而不一定推出,所以是的充分非必要条件,是的必要非充分条件;
③、是奇数,那么一定是偶数;是偶数,、不一定都是奇数(可能都为偶数),所以是的充分非必要条件,是的必要非充分条件;
④表示或,所以是成立的必要非充分条件;
⑤由交集的定义可知且是成立的充要条件;
⑥由知且,所以是成立的充分非必要条件;
⑦由知或,所以是,成立的必要非充分条件;
⑧易知“是4的倍数”是“是6的倍数”成立的既非充分又非必要条件;
(通过对上述问题的交流、思辩,在争论中得到了正确答案,并加深了对充分条件、必要条件的认识.)
例2已知是的充要条件,是的必要条件同时又是的充分条件,试与的关系.(投影)
解:由已知得,
所以是的充分条件,或是的必要条件.
4.小结回授
今天我们学习了充分条件、必要条件和充要条件的概念,并学会了判断条件A是B的什么条件,这为我们今后解决数学问题打下了等价转化的基础.
课内练习:课本(人教版,试验修订本,第一册(上))第35页练习l、2;第36页练习l、2.
(通过练习,检查学生掌握情况,有针对性的进行讲评.)
5.课外作业:教材第36页 习题1.8 1、2、3.
数学教案-圆的周长、弧长
圆周长、弧长(一)
教学目标 :
1、初步掌握圆周长、弧长公式;
2、通过弧长公式的推导,培养学生探究新问题的能力;
3、调动学生的积极性,培养学生的钻研精神;
4、进一步培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力。
教学重点:弧长公式。
教学难点 :正确理解弧长公式。
教学活动设计:
(一)复习(圆周长)
已知⊙O半径为R,⊙O的周长C是多少?
C=2πR
这里π=3.14159…,这个无限不循环的小数叫做圆周率。
由于生产、生活实际中常遇到有关弧的长度计算,那么怎样求一段弧的长度呢?
提出新问题:已知⊙O半径为R,求n°圆心角所对弧长。
(二)探究新问题、归纳结论
教师组织学生探讨(因为问题并不难,学生完全可以自己研究得到公式)。
研究步骤:
(1)圆周长C=2πR;
(2)1°圆心角所对弧长=;
(3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;
(4)n°圆心角所对弧长=。
归纳结论:若设⊙O半径为R, n°圆心角所对弧长l,则
(弧长公式)
(三)理解公式、区分概念
教师引导学生理解:
(1)在应用弧长公式 进行计算时,要注意公式中n的意义。n表示1°圆心角的倍数,它是不带单位的;
(2)公式可以理解记忆(即按照上面推导过程记忆);
(3)区分弧、弧的度数、弧长三概念。度数相等的弧,弧长不一定相等,弧长相等的。弧也不一定是等孤,而只有在同圆或等圆中,才可能是等弧。
(四)初步应用
例1、已知:如图,圆环的外圆周长C1=250cm,内圆周长C2=150cm,求圆环的宽度d (精确到1mm)。
分析:(1)圆环的宽度与同心圆半径有什么关系?
(2)已知周长怎样求半径?
(学生独立完成)
解:设外圆的半径为R1,内圆的半径为R2,则
d= 。
∵ , ,
∴ (cm)
例2,弯制管道时,先按中心线计算展直长度,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)
教师引导学生把实际问题抽象成数学问题,渗透数学建模思想。
解:由弧长公式,得
(mm)
所要求的展直长度
L (mm)
答:管道的展直长度为2970mm.
课堂练习:P176练习1、4题。
(五)总结
知识:圆周长、弧长公式;圆周率概念;
能力:探究问题的方法和能力,弧长公式的记忆方法;初步应用弧长公式解决问题。
(六)作业 教材P176练习2、3;P186习题3.
教学目的:
(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;
(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
教学重点:
集合的交集与并集、补集的概念;
教学难点:
集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;
【知识点】
1、并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B读作:“A并B”
即:A∪B={x|x∈A,或x∈B}
Venn图表示:
第4 / 7页
A与B的所有元素来表示。 A与B的交集。
2、交集
一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B读作:“A交B”
即:A∩B={x|∈A,且x∈B}
交集的Venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。
拓展:求下列各图中集合A与B的并集与交集
A
说明:当两个集合没有公共元素时,两个集合的交集是空集,不能说两个集合没有交集
3、补集
全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。
补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementary set),简称为集合A的补集,
记作:CUA
即:CUA={x|x∈U且x∈A}
第5 / 7页
补集的Venn图表示
说明:补集的概念必须要有全集的限制
4、求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分
交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。
5、集合基本运算的一些结论:
A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A
A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A
(CUA)∪A=U,(CUA)∩A=?
若A∩B=A,则A?B,反之也成立
若A∪B=B,则A?B,反之也成立
若x∈(A∩B),则x∈A且x∈B
若x∈(A∪B),则x∈A,或x∈B
¤例题精讲:
【例1】设集合U?R,A?{x|?1?x?5},B?{x|3?x?9},求A?B,?U(A?B)。解:在数轴上表示出集合A、B。
【例2】设A?{x?Z||x|?6},B??1,2,3?,C??3,4,5,6?,求:
(1)A?(B?C);(2)A??A(B?C)。
【例3】已知集合A?{x|?2?x?4},B?{x|x?m},且A?B?A,求实数m的取值范围。
XX且x?N}【例4】已知全集U?{x|x?10,,A?{2,4,5,8},B?{1,3,5,8},求
CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比较它们的关系。
教学目的:
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
教学重点:
集合的基本概念及表示方法
教学难点:
运用集合的两种常用表示方法——列举法与描述法,正确表示
一些简单的集合
授课类型:
新授课
课时安排:
1课时
教具:
多媒体、实物投影仪
内容分析:
1、集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明
教学过程:
一、复习引入:
1、简介数集的发展,复习公约数和最小公倍数,质数与和数;
2、教材中的章头引言;
3、集合论的创始人——康托尔(德国数学家)(见附录);
4、“物以类聚”,“人以群分”;
5、教材中例子(P4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。
定义:一般地,某些指定的对象集在一起就成为一个集合。
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合记作N,
(2)正整数集:非负整数集内排除0的集记作Nx或N+
(3)整数集:全体整数的集合记作Z,
(4)有理数集:全体有理数的集合记作Q,
(5)实数集:全体实数的集合记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集记作Nx或N+Q、Z、R等其它
数集内排除0的集,也是这样表示,例如,整数集内排除0
的集,表示成Zx
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈A颠倒过来写
三、练习题:
1、教材P5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数(不确定)
(2)好心的人(不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|,所组成的集合,最多含(A)
(A)2个元素(B)3个元素(C)4个元素(D)5个元素
5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:
(1)当x∈N时,x∈G;
(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G
证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,
则x=x+0x=a+b∈G,即x∈G
证明(2):∵x∈G,y∈G,
∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)
∴x+y=(a+b)+(c+d)=(a+c)+(b+d)
∵a∈Z,b∈Z,c∈Z,d∈Z
∴(a+c)∈Z,(b+d)∈Z
∴x+y=(a+c)+(b+d)∈G,
又∵=
且不一定都是整数,
∴=不一定属于集合G
四、小结:本节课学习了以下内容:
1、集合的有关概念:(集合、元素、属于、不属于)
2、集合元素的性质:确定性,互异性,无序性
3、常用数集的定义及记法
五、课后作业:
六、板书设计(略)
高中数学考试的技巧
一、整体把握、抓大放小
拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的题目,一定要拿到应得的分数。
二、确定每部分的答题时间
1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。
2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。
三、碰到难题时
1、你可以先用“直觉”最快的找到解题思路;
2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;
3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。
4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。
四、卷面整洁、字迹清楚、注意小节
做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。
高中数学有效的学习方法
一、课后及时回忆
如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。
二、定期重复巩固
即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。
三、科学合理安排
复习一般可以分为集中复习和分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。
一、教学目标
(一)知识与技能
了解数轴的概念,能用数轴上的点准确地表示有理数。
(二)过程与方法
通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
(三)情感、态度与价值观
在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点
(一)教学重点
数轴的三要素,用数轴上的点表示有理数。
(二)教学难点
数形结合的思想方法。
三、教学过程
(一)引入新课
提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知
学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:
提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?
学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?
师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习
如图,写出数轴上点A,B,C,D,E表示的数。
(四)小结作业
提问:今天有什么收获?
引导学生回顾:数轴的三要素,用数轴表示数。
【学习目标】
1、感受数学探索的成功感,提高学习数学的兴趣;
2、经历诱导公式的探索过程,感悟由未知到已知、复杂到简单的数学转化思想。
3、能借助单位圆的对称性理解记忆诱导公式,能用诱导公式进行简单应用。
【学习重点】三角函数的诱导公式的理解与应用
【学习难点】诱导公式的推导及灵活运用
【知识链接】(1)单位圆中任意角α的正弦、余弦的定义
(2)对称性:已知点P(x,),那么,点P关于x轴、轴、原点对称的点坐标
【学习过程】
一、预习自学
阅读书第19页——20页内容,通过对-α、π-α、π+α、2π-α、α的终边与单位圆的交点的对称性规律的探究,结合单位圆中任意角的正弦、余弦的定义,从中自我发现归纳出三角函数的诱导公式,并写出下列关系:
(1)- 407[导学案]4.4单位圆的对称性与诱导公式与 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系
(2)角407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系
(3)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系
(4)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系
二、合作探究
探究1、求下列函数值,思考你用到了哪些三角函数诱导公式?试总结一下求任意角的三角函数值的过程与方法。
(1) 407[导学案]4.4单位圆的对称性与诱导公式 (2) 407[导学案]4.4单位圆的对称性与诱导公式 (3)sin(-1650°);
探究2: 化简: 407[导学案]4.4单位圆的对称性与诱导公式 407[导学案]4.4单位圆的对称性与诱导公式(先逐个化简)
探究3、利用单位圆求满足 407[导学案]4.4单位圆的对称性与诱导公式 的角的集合。
三、学习小结
(1)你能说说化任意角的正(余)弦函数为锐角正(余)弦函数的一般思路吗?
(2)本节学习涉及到什么数学思想方法?
(3)我的疑惑有
【达标检测】
1、在单位圆中,角α的终边与单位圆交于点P(- 407[导学案]4.4单位圆的对称性与诱导公式 , 407[导学案]4.4单位圆的对称性与诱导公式 ),
则sin(-α)= ;cs(α±π)= ;cs(π-α)=
2.求下列函数值:
(1)sin( 407[导学案]4.4单位圆的对称性与诱导公式 )= ; (2) cs210&rd;=
3、若csα=-1/2,则α的集合S=
1.1.2集合的表示方法
一、教学目标:
1、集合的两种表示方法(列举法和特征性质描述法)。
2、能选择适当的方法正确的表示一个集合。
重点:集合的表示方法。
难点:集合的特征性质的概念,以及运用特征性质描述法表示集合。
二、复习回顾:
1、集合中元素的特性:______________________________________.
2、常见的数集的简写符号:自然数集 整数集 正整数集
有理数集 实数集
三、知识预习:
1. ___________________________________________________________________________ ____________________________________________________________________叫做列举法;
2. _______________________ ____________________________________________________叫做集合A的一个特征性质。 ___________________________________________________________________________________
叫做特征性质描述法,简称描述法。
说明:概念的理解和注意问题
1. 用列举法表示集合时应注意以下5点:
(1) 元素间用分隔号,
(2) 元素不重复;
(3) 不考虑元素顺序;
(4) 对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但必须把元素间的规律显示清楚后方能用省略号。
(5) 无限集有时也可用列举法表示。
2. 用特征性质描述法表示集合时应注意以下6点;
(1) 写清楚该集合中元素的代号(字母或用字母表达的元素符号);
(2) 说明该集合中元素的性质;
(3) 不能出现未被说明的字母;
(4) 多层描述时,应当准确使用且和或
(5) 所有描述的内容都要写在集合符号内;
(6) 用于描述的'语句力求简明,准确。
四、典例分析
题型一 用列举法表示下列集合
例1 用列举法表示下列集合
(1)A={x N|0
变式训练:○1课本7页练习A第1题。 ○2课本9页习题A第3题。
题型二 用描述法表示集合
例2 用描述法表示下列集合
(1){-1,1} (2)大于3的全体偶数构成的集合 (3)在平面 内,线段AB的垂直平分线
变式训练:课本8页练习A第2题、练习B第2题、9页习题A第4题。
题型三 集合表示方法的灵活运用
例3 分别判断下列各组集合是否为同一个集合:
(1)A={x|x+32} B={y|y+32}
(2) A={(1,2)} B={1,2}
(3) M={(x,y)|y= +1} N={y| y= +1}
变式训练:1、集合A={x|y= ,x Z,y Z},则集合A的元素个数为( )
A 4 B 5 C 10 D 12
2、课本8页练习B第1题、习题A第1题
例4 已知集合A={x|k -8x+16=0}只有一个元素,试求实数k的值,并用列举法表示集合A.
作业:课本第9页A组第2题、B组第1、2题。
限时训练
1. 选择
(1)集合 的另一种表示法是( B )
A. B. C. D.
(2) 由大于-3小于11的偶数所组成的集合是( D )
A. B.
C. D.
(3) 方程组 的解集是( D )
A. (5, 4) B. C. (-5, 4) D. (5,-4)
(4)集合M= (x,y)| xy0, x , y 是( D )
A. 第一象限内的点集 B. 第三象限内的点集
C. 第四象限内的点集 D. 第二、四象限内的点集
(5)设a, b , 集合 1,a+b, a = 0, , b , 则b-a等于( C )
A. 1 B. -1 C. 2 D. -2
2. 填空
(1)已知集合A= 2, 4, x2-x , 若6 ,则x=___-2或3______.
(2)由平面直角坐标系内第二象限的点组成的集合为__ __.
(3)下面几种表示法:○1 ;○2 ; ○3 ;
○4(-1,2);○5 ;○6 . 能正确表示方程组
的解集的是__○2__○5_______.
(4) 用列举法表示下列集合:
A= =___{0,1,2}________________________;
B= =___{-2,-1,0,1,2}________________________;
C= =___{(2,0), (-2,0),(0,2),(0,-2)}___________.
(5) 已知A= , B= , 则集合B=__{0,1,2}________.
3. 已知集合A= , 且-3 ,求实数a. (a= )
4. 已知集合A= .
(1) 若A中只有一个元素,求a的值;(a=0或a=1)
(2)若A中至少有一个元素,求a的取值范围;(a1)
(3)若A中至多有一个元素,求a的取值范围。(a=0或a1)