本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,一起看看华师大七年级数学上册教案!欢迎查阅!
教学目标
根据上述教材结构特点与教学重、难点,考虑到学生已有的认知结构、心理特征,结合新课改理念,特制定如下教学目标:
1.知识目标
(1)、掌握了什么样的项是同类项的基础上,通过具体情境探究得出同类项可以合并,并形成合并同类项的法则。
(2)、能运用合并同类项的法则进行合并同类项。
2.能力目标
(1)、通过具体情境的观察、思考、类比、探索、交流和反思等数学活动培养学生创新意识和分类思想,使学生掌握研究问题的方法,从而学会学习。
(2)、通过具体情境贴近学生生活,让学生在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化。会利用合并同类项的知识解决一些实际问题。
(3)、通过知识梳理,培养学生的概括能力、表达能力和逻辑思维能力。
3.德育目标
(1)、通过由数的加减推广到同类项的合并,可以培养学生由特殊到一般的思维认知规律。
(2)、通过具体情境的探索、交流等数学活动培养学生的团体合作精神和积极参与、勤于思考意识。
4.美育目标
通过合并同类项,学生们能明显地感觉到数学的形式美、简洁美,感悟到学数学是一种美的享受,爱学、乐学数学。
二、 教学方法、手段
1. 教学设想
突出以学生的“数学活动”为主线,激发学生学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验。
2. 教学方法
利用引导发现法、讨论法,引导学生从具体生活情境及已有的知识和生活经验出发,提出问题与学生共同探索、学生与学生共同探索,以调动学生求知欲望,培养探索能力、创新意识。
3. 教学手段
利用多媒体创设教学情境,引导学生观察、探索、发现、归纳来激发学生学习兴趣、激活学生思维,以利于突破教学重点和难点,提高课堂教学效益。新课标提倡教学中要重视现代教育技术、要引导学生独立思考、自主探索与合作交流,让学生掌握知识的发生发展过程,主动去获得新的知识,学会获取知识的方法,因而在教学中创设情境让学生乐意并全身心投入到现实的、探索性的数学活动中去。
三、学法指导
自主探究法:主动观察→分析→思考→比较→探索→联想→猜测→类比→归纳→例题探索→练习挑战、巩固提高→总结
一:教材分析:(说教材)
1:教材所处的地位和作用:
本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣
以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
2:教育教学目标:
(1)知识目标:
(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。
(B)
通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。
(2)能力目标:
通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。
(3)思想目标:
通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3:重点,难点以及确定的依据:
根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。
二:学情分析:(说学法)
1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。
2:学生在列方程解应用题时,可能存在三个方面的困难:
(1)抓不准相等关系;
(2)找出相等关系后不会列方程;
(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。
3:
学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。
4:
学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。
5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。
三:教学策略:(说教法)
如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:
1:“读(看)——议——讲”结合法
2:图表分析法
3:教学过程中坚持启发式教学的原则
教学的理论依据是:
1:必须先明确根据应用题题意列方程是重点,同时也是
难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相
等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让
学生大致了解列出一元一次方程解应用题的方法。
2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表
示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例
1中,不能把“设原来有X千克面粉”写成“设原来有X”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“X
”“—15%X”“42500
”的单位都是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例
1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2
步是关键步骤。
教学目标
1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行运算;
2.了解倒数概念,会求给定有理数的倒数;
3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运算,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节教学的重点是熟练进行运算,教学难点 是理解法则。
1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。如:按法则1计算:原式;按法则2计算:原式。
2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。如;在有整除的情况下,应用第二个法则比较方便,如;在能整除的情况下,应用第二个法则比较方便,如,如写成就麻烦了。
(二)知识结构
(三)教法建议
1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。
2.关于0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。
3.理解倒数的概念
(1)根据定义乘积为1的两个数互为倒数,即:,则互为倒数。如:,则2与,-2与互为倒数。
(2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。如:求的倒数:计算,-2就是的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。如-2可以看作,分子、分母颠倒位置后为,就是的倒数。
(3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。如:,2与互为倒数,2与-2互为相反数。其次互为倒数的两个数符号相同,而互为相反数符号相反。如:-2的倒数是,-2的相反数是+2;另外0没有倒数,而0的相反数是0。
4.关于倒数的求法要注意:
(1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可.
(2)正数的倒数是正数,负数的倒数仍是负数.
(3)负倒数的定义:乘积是-1的两个数互为负倒数.