八年级数学教案(精选14篇)

作为一名老师,往往需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。那么你有了解过教案吗?以下是编辑给家人们找到的14篇八年级数学教案,仅供借鉴,希望对大家有一些参考价值。

八年级数学教案 篇1

菱形

学习目标(学习重点):

1.经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;

2.运用菱形的识别方法进行有关推理。

补充例题:

例1. 如图,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由。

例2.如图,平行四边形ABCD的对 角线AC的垂直平分线与边AD、BC分别交于E、F.

四边形AFCE是菱形吗?说明理由。

例3.如图 , ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点

(1)试说明四边形AECG是平行四边形;

(2)若AB=4cm,BC=3cm,求线段EF的长;

(3)当矩形两边AB、BC具备怎样的关系时,四边形AECG是菱形。

课后续助:

一、填空题

1.如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形

2.如图,D、E、F分别是△ABC的边BC、CA、AB上的点,

且DE∥BA,DF∥ CA

(1)要使四边形AFDE是菱形,则要增加条件______________________

(2)要使四边形AFDE是矩形,则要增加条件______________________

二、解答题

1.如图,在□ABCD中 ,若2,判断□ABCD是矩形还是菱形?并说明理由。

2.如图 ,平行四边形A BCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5.

(1) AC,BD互相垂直吗?为什么?

(2) 四边形ABCD是菱形 吗?

3.如图,在□ABCD中,已知ADAB,ABC的平分线交AD于E,EF∥AB交BC于F,试问: 四 边形ABFE是菱形吗?请说明理由。

4.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.

⑴求证:ABF≌

⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由。

八年级数学教案 篇2

平方差公式

学习目标:

1、能推导平方差公式,并会用几何图形解释公式;

2、能用平方差公式进行熟练地计算;

3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律。

学习重难点:

重点:能用平方差公式进行熟练地计算;

难点:探索平方差公式,并用几何图形解释公式。

学习过程:

一、自主探索

1、计算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)

(3) (x+5y)(x-5y) (4)(y+3z) (y-3z)

2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现。

3、你能用自己的语言叙述你的发现吗?

4、平方差公式的特征:

(1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两 个二项式必须有一项完全相同,另一项只有符号不同。

(2)、公式中的a与b可以是数,也可以换成一个代数式。

二 、试一试

例1、利用平方差公式计算

(1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)

例2、利用平方差公式计算

(1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2

三、合作交流

如图,边长为a的大正方形中有一个边长为b的小正方形。

(1)请表示图中阴影部分的面积。

(2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗? a a b

(3)比较(1)(2)的结果,你能验证平方差公式吗?

四、巩固练习

1、利用平方差公式计算

(1)(a+2)(a-2) (2)(3a+2b)(3a-2b)

(3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)

2、利用平方差公式计算

(1)803797 (2)398402

3、平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )

A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以

4、下列多项式的乘法中,可以用平方差公式计算的是( )

A.(a+b)(b+a) B.(-a+b)(a-b)

C.( a+b)(b- a) D.(a2-b)(b2+a)

5、下列计算中,错误的有( )

①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;

③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.

A.1个 B.2个 C.3个 D.4个[来源:中。考。资。源。网]

6、若x2-y2=30,且x-y=-5,则x+y的值是( )

A.5 B.6 C.-6 D.-5

7、(-2x+y)(-2x-y)=______.

8、(-3x2+2y2)(______)=9x4-4y4.

9、(a+b-1)(a-b+1)=(_____)2-(_____)2.

10、两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.

11、利用平方差公式计算:20 19 。

12、计算:(a+2)(a2+4)(a4+16)(a-2)。

五、学习反思

我的收获:

我的疑惑:

六、当堂测试

1、下列多项式乘法中能用平方差公式计算的是( )。

(A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[

2、填空:(1)(x2-2)(x2+2)=

(2)(5x-3y)( )=25x2-9y2

3、计算:

(1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)

4、利用平方差公式计算

①1003997 ②14 15

七、课外拓展

下列各式哪些能用平方差公式计算?怎样用?

1) (a-b+c)(a-b-c)

2) (a+2b-3)(a-2b+3)

3) (2x+y-z+5)(2x-y+z+5)

4) (a-b+c-d)(-a-b-c-d)

2.2完全平方公式(1)

八年级数学教案 篇3

教材分析

因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。

学情分析

通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。

教学目标

1、在分解因式的过程中体会整式乘法与因式分解之间的联系。

2、通过公式a -b =(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。

3、能运用提公因式法、公式法进行综合运用。

4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。

教学重点和难点

重点:灵活运用平方差公式进行分解因式。

难点:平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。

八年级数学教案 篇4

教学目标:

1、学会根据定义判别分式方程与整式方程,了解分式方程增根产生的原因,掌握验根的方法。

2、掌握可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解。

教学重点:去分母法解可化为一元一次方程或一元二次方程的分式方程。验根的方法。

教学难点:验根的方法。分式方程增根产生的原因。

教学准备:小黑板。

教学过程:

复习引入:下列方程中哪些分母中含有未知数?哪些分母中不含有未知数?

(1);(2);(3);(4);

(5);(6);(7);(8)。

讲授新课:

1、由上述归纳出分式方程的概念:只含有分式或整式,且分母里含有未知数的方程叫做分式方程。方程两边都是整式的方程叫做整式方程。

2、讨论分式方程的解法:

(1)复习解方程时,怎样去分母?

(2)讲解例1:解方程(按课文讲解)

归纳:解分式方程的基本思想:

分式方程整式方程

(3)讲解例2:解方程(按课文讲解)

归纳:在去分母时,有时可能产生不适合原方程的根,我们把它叫做增根。因此解分式方程必须检验,常把求得得根代入原方程的最简公分母,看它的值是否为0,若为0,则为增根,必须舍去;若不为0,则为原方程的根。

想一想:产生增根的原因是什么?

巩固练习:P1451t,2t。

课堂小结:什么叫做分式方程?

解分式方程时,为什么要检验?怎样检验?

布置作业:见作业本。

八年级数学教案 篇5

【教学目标】

1、了解三角形的中位线的概念

2、了解三角形的中位线的性质

3、探索三角形的中位线的性质的一些简单的应用

【教学重点、难点】

重点:三角形的中位线定理。

难点:三角形的中位线定理的证明中添加辅助线的思想方法。

【教学过程】

(一)创设情景,引入新课

1、如图,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出池塘的宽BC,你知道这是为什么吗?

2、动手操作:剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片

(1)如果要求剪得的两张纸片能拼成平行的四边形,剪痕的位置有什么要求?

(2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形做怎样的图形变换?

3、引导学生概括出中位线的概念。

问题:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?

启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形中线只有一个端点是边中点,另一端点上三角形的一个顶点。

4、猜想:DE与BC的关系?(位置关系与数量关系)

(二)、师生互动,探究新知

1、证明你的猜想

引导学生写出已知,求证,并启发分析。

(已知:⊿ABC中,D、E分别是AB、AC的中点,求证:DE∥BC,DE=1/2BC)

启发1:证明直线平行的方法有哪些?(由角的相等或互补得出平行,由平行四边形得出平行等)

启发2:证明线段的倍分的方法有哪些?(截长或补短)

学生分小组讨论,教师巡回指导,经过分析后,师生共同完成推理过程,板书证明过程,强调有其他证法。

证明:如图,以点E为旋转中心,把⊿ADE绕点E,按顺时针方向旋转180゜,得到⊿CFE,则D,E,F同在一直线上,DE=EF,且⊿ADE≌⊿CFE。

∴∠ADE=∠F,AD=CF,

∴AB∥CF。

又∵BD=AD=CF,

∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),

∴DF∥BC(根据什么?),

∴DE 1/2BC

2、启发学生归纳定理,并用文字语言表达:三角形中位线平行于第三边且等于第三边的一半。

(三)学以致用、落实新知

1、练一练:已知三角形边长分别为6、8、10,顺次连结各边中点所得的。三角形周长是多少?

2、想一想:如果⊿ABC的三边长分别为a、b、c,AB、BC、AC各边中点分别为D、E、F,则⊿DEF的周长是多少?

3、例题:已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。

求证:四边形EFGH是平行四边形。

启发1:由E,F分别是AB,BC的中点,你会联想到什么图形?

启发2:要使EF成为三角的中位线,应如何添加辅助线?应用三角形的中位线定理,能得到什么?你能得出EF∥GH吗?为什么?

证明:如图,连接AC。

∵EF是⊿ABC的中位线,

∴EF 1/2AC(三角形的中位线平行于第三边,并且等于第三边的一半)。

同理,HG 1/2AC。

∴EF HG。

∴四边形EFGH是平行四边形(一组对边平行并且相等的四边形是平行四边形)

挑战:顺次连结上题中,所得到的四边形EFGH四边中点得到一个四边形,继续作下去。。。你能得出什么结论?

(四)学生练习,巩固新知

1、请回答引例中的问题(1)

2、如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC, BD的中点。求证:∠PNM=∠PMN

(五)小结回顾,反思提高

今天你学到了什么?还有什么困惑?

八年级数学教案 篇6

知识结构

重点与难点分析:

本节课教学方法主要是“自学辅导与发现探究法”。力求体现知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:

(1)由“先教后学”转向“先学后教

本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

(2)在层次教学中培养学生的思维能力

本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

教法建议:

由“先教后学”转向“先学后教”

本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

(2)在层次教学中培养学生的思维能力

本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

综合练习的。多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。

这里注意两点:

一是给出题目后先让学生独立思考,并按教材的形式严格书写。

二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

八年级数学教案 篇7

教学目标

(一)教学知识点

1、等腰三角形的概念、

2、等腰三角形的性质、

3、等腰三角形的概念及性质的应用、

1、经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点、

2、探索并掌握等腰三角形的性质、

(三)情感与价值观要求

通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯、

教学重点

1、等腰三角形的概念及性质、

2、等腰三角形性质的应用、

教学难点

等腰三角形三线合一的性质的理解及其应用、

教学方法

探究归纳法、

教具准备

师:多媒体课件、投影仪;

生:硬纸、剪刀、

教学过程

1、提出问题,创设情境

(师)在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案、这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形、来研究:

①三角形是轴对称图形吗?

②什么样的三角形是轴对称图形?

(生)有的三角形是轴对称图形,有的三角形不是。

(师)那什么样的三角形是轴对称图形?

(生)满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

(师)很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

2、导入新课

(师)同学们通过自己的思考来做一个等腰三角形。作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

(生乙)在甲同学的做法中,A点可以取直线L上的任意一点。

(师)对,按这种方法我们可以得到一系列的等腰三角形、现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,剪出一个等腰三角形。

(师)按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形、相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角、同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

(师)有了上述概念,同学们来想一想。

(演示课件)

1、等腰三角形是轴对称图形吗?请找出它的对称轴。

2、等腰三角形的两底角有什么关系?

3、顶角的平分线所在的直线是等腰三角形的对称轴吗?

4、底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

(生甲)等腰三角形是轴对称图形、它的对称轴是顶角的平分线所在的直线、因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

(师)同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

(生乙)我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等。

(生丙)我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线。

(生丁)我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴。

(生戊)老师,我发现底边上的高所在的直线也是等腰三角形的对称轴。

(师)你们说的是同一条直线吗?大家来动手折叠、观察。

(生齐声)它们是同一条直线。

(师)很好、现在同学们来归纳等腰三角形的性质。。

(生)我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。

(师)很好,大家看屏幕。

(演示课件)

等腰三角形的性质:

1、等腰三角形的两个底角相等(简写成“等边对等角”)

2、等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)、

(师)由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质、同学们现在就动手来写出这些证明过程)

(投影仪演示学生证明过程)

(生甲)如右图,在ABC中,AB=AC,作底边BC的中线AD,因为

所以BAD≌CAD(SSS)、

所以∠B=∠C、

(生乙)如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

所以BAD≌CAD、

所以BD=CD,∠BDA=∠CDA=∠BDC=90°。

(师)很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范、下面我们来看大屏幕。

(演示课件)

(例1)如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数、

(师)同学们先思考一下,我们再来分析这个题、

(生)根据等边对等角的性质,我们可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A。再由三角形内角和为180°,就可求出ABC的三个内角。

(师)这位同学分析得很好,对我们以前学过的定理也很熟悉、如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。

(课件演示)

(例)因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC、∠A=∠ABD(等边对等角)、

设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x、

于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°。

在ABC中,∠A=35°,∠ABC=∠C=72°、

(师)下面我们通过练习来巩固这节课所学的知识、

3、随堂练习

(一)课本P141练习1、2、3。

练习

1、如下图,在下列等腰三角形中,分别求出它们的底角的度数、

答案:(1)72°(2)30°

2、如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?

答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD、

3、如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数、

答:∠B=77°,∠C=38、5°、

(二)阅读课本P138~P140,然后小结、

4、课时小结

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用、等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高、

我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们、

5、课后作业

(一)课本P147─1、3、4、8题、

(二)1、预习课本P141~P143、

2、预习提纲:等腰三角形的判定、

6、活动与探究

如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E、

求证:AE=CE、

过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,等腰三角形的性质、

结果:

证明:延长CD交AB的延长线于P,如右图,在ADP和ADC中

ADP≌ADC、

∠P=∠ACD、

又DE∥AP,

∠4=∠P、

∠4=∠ACD、

DE=EC、

同理可证:AE=DE、

AE=CE、

板书设计

八年级数学教案 篇8

一、教学目的

1.使学生进一步理解自变量的取值范围和函数值的意义.

2.使学生会用描点法画出简单函数的图象.

二、教学重点、难点

重点:1.理解与认识函数图象的意义.

2.培养学生的看图、识图能力.

难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题.

三、教学过程

复习提问

1.函数有哪三种表示法?(答:解析法、列表法、图象法.)

2.结合函数y=x的图象,说明什么是函数的图象?

3.说出下列各点所在象限或坐标轴:

新课

1.画函数图象的方法是描点法.其步骤:

(1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了.

一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来.

(2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点.

(3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线.

一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线).

2.讲解画函数图象的三个步骤和例.画出函数y=x+0.5的图象.

小结

本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图.

练习

①选用课本练习(前一节已作:列表、描点,本节要求连线)

②补充题:画出函数y=5x-2的图象.

作业

选用课本习题.

四、教学注意问题

1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征.

2.注意充分调动学生自己动手画图的积极性.

3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力.

八年级数学教案 篇9

5 14.3.2.2 等边三角形(二)

教学目标

掌握等边三角形的性质和判定方法.

培养分析问题、解决问题的能力.

教学重点

等边三角形的性质和判定方法.

教学难点

等边三角形性质的应用

教学过程

I创设情境,提出问题

回顾上节课讲过的等边三角形的有关知识

1.等边三角形是轴对称图形,它有三条对称轴.

2.等边三角形每一个角相等,都等于60°

3.三个角都相等的三角形是等边三角形.

4.有一个角是60°的等腰三角形是等边三角形.

其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

II例题与练习

1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

①在边AB、AC上分别截取AD=AE.

②作∠ADE=60°,D、E分别在边AB、AC上.

③过边AB上D点作DE∥BC,交边AC于E点.

2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

III课堂小结

1、等腰三角形和性质

2、等腰三角形的条件

V布置作业

1.教科书第147页练习1、2

2.选做题:

(1)教科书第150页习题14.3第ll题.

(2)已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

(3)《课堂感悟与探究》

5

八年级数学教案 篇10

一、学情分析

本学期本人继续担任八年级(2)班的数学教学工作,八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。从上期期末考试的成绩来看1班、2班的成绩差异很大,2班有少数学生不上进,思维不紧跟老师,有部分同学基础较差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

二、教材分析

本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:

第十七章分式

本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。

第十八章函数及其图像

函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。本章的难点在于对学生抽象思维的培养,以及提高数形结合的意识和能力。

第十九章全等三角形

本章主要内容是探索三角形全等的判定方法,领略推理证明的奥秘,由于三角形全等的判定方法与全等三角形的性质具有“互逆”的特点,所以本章因势利导,介绍了命题与定理、逆命题与逆命题的有关知识。此外,本章教材最后还介绍了几种常用的基本作图和简单的尺规作图的方法。

第二十章平行四边形的判定

本章的内容包括平行四边形的判定;矩形、菱形、正方形等几种特殊平行四边形的判定;等腰梯形的判定等几个部分。本章首先通过回顾平行四边形的性质,由性质引出判定方法,在此基础上,学习矩形、菱形、正方形等特殊平行四边形的判定,最后介绍了等腰梯形的判定与应用。本章知识是在学习了平行线、三角形、平行四边形的性质等知识的基础上的进一步深化和提高,是今后学习其他几何知识的基础。

第二十一章数据的整理与初步处理

本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

三、提高学科教育质量的主要措施:

1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。

8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。

9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

10、培养学生学习数学的良好习惯。这些习惯包括:

①认真做作业的习?包括作业前清理好桌面,作业后认真检查;

②预习的习惯;

③认真看批改后的作业并及时更正的习惯;

④认真做好课前准备的习惯;

⑤在书上作精要笔记的习惯;

⑥妥善保管书籍资料和学习用品的习惯;

⑦认真阅读数学教材的习惯。

八年级数学教案 篇11

教学目标:

1、知识目标:探索图形之间的变换关系(轴对称、平移、旋转及其组合)。

2、能力目标:

①经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,掌握画图技能。

②能够按要求作出简单平面图形旋转后的图形,并在此基础上达到巩固旋转的有关性质。

3、情感体验点:培养学生的观察能力和审美能力,激发学生学习数学的兴趣。

重点与难点:

重点:图形之间的变换关系(轴对称、平移、旋转及其组合);

难点:综合利用各种变换关系观察图形的形成。

疑点:基本图案不同,形成方式不同。

教学方法:

新授课在教师引导下,以学生的分组讨论、合作交流为主展开教学。

教学过程设计:

1、情境导入

播放自制图形形成的影片,如图351。

2、充分利用本课时引入开放性的问题:图351由四部分组成,每部分都包括两个小十字,其中一部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其它方式吗?

问题本身为学生创设了一个探究图形之间变化关系的情景,图形虽十简单,但变换方式综合性强,可以让学生自由发挥,各抒已见,后由教师进行适当归纳小结:

(1)整个图形可以看做是由一个十字组成部分通过连续七次平移前后的图形共同组成;

(2)整个图形也可以看做是由左边的两个十字组成的部分通过三次放置形成的;

(3)整个图形不定期可以看做把左边的两个十字组成的部分先通过平移一次形成左右四个十字组成的图形,然后绕图形中心旋转90度前后的图形共同组成;

(4)整个图形还可以看做把左边的两个十字组成的部分通过二次轴对称形成的。

(学生可能还有其他不同描述,教师应予以肯定)

3、通过上述问题的讨论,我们看到图形的平移、旋转,轴对称变换是图形变换中最基本的三种变换方式,它们是今后设计图案的主要手段。

4、利用想一想你能将图352的左图,通过平移或旋转得到右图吗?

学生议论或动手操作会发现这是不可能的,教材意图十分明确,要告诉学生并不是所有图形都可以通过一次平移或旋转而得到的,从而要求我们今后分析图形之间的关系时,要充分利用它们各自的性质、特征正确判断和识别。那么上述图形能通过轴对称变换从左图变成右图吗?进一步让学生思考,从而得到结论是可能的。

5、例1、怎样将图353中的甲图变成乙图案?

通过相对简单活泼的问题,让学生能运用图形变换的几种不同方式解答问题(先旋转再平移后等到或先平移后旋转也可以)

例2、怎样将图354中右边的图案变成左边的图案?

留给学生充足的时间讨论交流。

(师):哪位同学有好好方法,请告诉大家!

(生):以右图案的中心为旋转中心,将图案按逆时针方向旋转900 。

(生):以右图案的中心为旋转中心,将图案顺逆时针方向旋转2700 。

明确可以通过不同的办法达到同样的效果,激励学生动手动脑。

5、学习小结

(1)内容总结

两个图案前后变化彩用了哪些方法?(平移、旋转,轴对称)

(2)方法归纳

①了解并知道图案变化的一般方法。

②图案变化的方法很多,在生活中要养成多途径观察,思考问题的习惯。

6、目标检测

图355是由三个正三角形拼成的,它可以看做由其中一个三角形经过怎样的变换而得到?

延伸拓展:

1、链接生活

链接一:奥运会的五环旗图案是大家熟悉的图案,请你根据所学知识分析它的形成。(用课本知识解释生活中的图形变换)

链接二:夏季是荷花盛开的季节,同学们都赞美过它出淤泥而不染的品质,很多同学曾画过荷花,请你用所学知识再画一朵荷花,看与以前有什么不同的感受(让学生进一步体会数学与生活的密切联系)

实践探索:

①实践活动列举实例归纳图形之间的变换关系(平移、旋转,轴对称及其组合)

②巩固练习课本74页中的习题3.6。

板书设计:

3.5它们是怎样变过来的。

轴对称、平移、旋转的性质例题;

图形之间的变换关系;

八年级数学教案 篇12

教学任务分析

教学目标

知识技能

一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.

二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.

数学思考

在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.

解决问题

一、会进行同分母和异分母分式的加减运算.

二、会解决与分式的加减有关的简单实际问题.

三、能进行分式的加、剪、乘、除、乘方的混合运算.

情感态度

通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.

重点

分式的加减法.

难点

异分母分式的加减法及简单的分式混合运算.

教学流程安排

活动流程图

活动内容和目的

活动1:问题引入

活动2:学习同分母分式的加减

活动3:探究异分母分式的加减

活动4:发现分式加减运算法则

活动5:巩固练习、总结、作业

向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.

类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.

回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.

通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.

通过练习、作业进一步巩固分式的运算.

课前准备

教具

学具

补充材料

课件

教学过程设计

问题与情境

师生行为

设计意图

[活动1]

1.问题一:比较电脑与手抄的录入时间.

2.问题二;帮帮小明算算时间

所需时间为,

如何求出的值?

3.这里用到了分式的加减,提出本节课的主题.

教师通过课件展示问题.学生积极动脑解决问题,提出困惑:

分式如何进行加减?

通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.

[活动2]

1.提出小学数学中一道简单的分数加法题目.

2.用课件引导学生用类比法,归纳总结同分母分式加法法则.

3.教师使用课件展示[例1]

4.教师通过课件出两个小练习.

教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.

学生在教师的引导下,探索同分母分式加减的运算方法.

通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.

由两个学生板书自主完成练习,教师巡视指导学生练习.

运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.

师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.

让学生进一步体会同分母分式的加减运算.

[活动3]

1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.

2.教师提出思考题:

异分母的分式加减法要遵守什么法则呢?

教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.

教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.

由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.

通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.

[活动4]

1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.

2.教师使用课件展示[例2]

3.教师通过课件出4个小练习.

4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式 ;

试用含有R1的式子表示总电阻R

5.教师使用课件展示[例4]

教师提出要求,由学生说出分式加减法则的字母表示形式.

通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.

教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.

教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.

分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.

由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.

让学生体会运用的公式解决问题的过程.

锻炼学生运用法则解决问题的能力,既准确又有速度.

提高学生的计算能力.

通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.

提高学生综合应用知识的能力.

[活动5]

1、教师通过课件出2个分式混合运算的小练习.

2、总结:

a)这节课我们学习了哪些知识?你能说一说吗?

b)⑴方法思路;

c)⑵计算中的主意事项;

d)⑶结果要化简.

3、作业:

a)教科书习题16.2第4、5、6题.

学生练习、巩固.

教师巡视指导.

学生完成、交流.,师生评价.

教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.

教师布置作业.

锻炼学生运用法则进行运算的能力,提高准确性及速度.

提高学生归纳总结的能力.

八年级数学教案 篇13

一、教材分析:

《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。

本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。

(一)知识目标:

1、要求学生掌握正方形的概念及性质;

2、能正确运用正方形的性质进行简单的计算、推理、论证;

(二)能力目标:

1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;

2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;

(三)情感目标:

1、让学生树立科学、严谨、理论联系实际的良好学风;

2、培养学生互相帮助、团结协作、相互讨论的团队精神;

3、通过正方形图形的完美性,培养学生品格的完美性。

二、学生分析:

该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。

三、教法分析:

针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。

通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。

四、学法分析:

本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。

五、教学程序:

第一环节:相关知识回顾

第二环节:新课讲解通过学生们的发现引出课题“正方形”

1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。

2、正方形的性质定理1:正方形的四个角都是直角,四条边都相等;

定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。

以上是对正方形定义和性质的学习,之后是进行例题讲解。

3、例题讲解:求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。此题是文字证明题,由学生们分组相互探讨,共同研究此题的已知、求证部分,然后由小组派代表阐述证明过程,教师板书,在板书的过程中,请其它小组的同学提出合理化建议,使此题证明过程条理更加清晰,更加符合逻辑,同时强调证明格式的书写。从而培养他们语言表达能力,让学生的个性得到充分的展示

4、课堂练习:第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。

第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。

5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。

6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。

八年级数学教案 篇14

教学目标:

1、经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;

2、索并掌握平行四边形的性质,并能简单应用;

3、在探索活动过程中发展学生的探究意识。

教学重点:

平行四边形性质的探索。

教学难点:

平行四边形性质的理解。

教学准备:

多媒体课件

教学过程:

第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)

1、小组活动一

内容:

问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

(1)你拼出了怎样的四边形?与同桌交流一下;

(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

2、小组活动二

内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?

第二环节 探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)

小组活动3:

用 一张半透明的纸复制你刚才画的平行四边形,并将复制 后的四边形绕一个顶点旋转180,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?

(1)让学生动手操作、复制、旋转 、观察、分析;

(2)学生交流、议论;

(3)教师利用多媒体展示实践的过程。

第三环节 推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)

实践 探索内容

(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。

(2)可以通过推理来证明这个结论,如图连结AC。

∵ 四边形ABCD是平行四边形

AD // BC, AB // CD

2,4

△AB C和△CDA中

1

AC=C A

4

△ABC≌△CDA(ASA)

AB=DC, AD=CB,B

又∵2

4

3=4

即BAD=DCB

第四环节 应用巩固 深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)

1。活动内容:

(1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?

A(学生思考、议论)

B总结归纳:可以确定其它三个内角的度数。

由平行四边形对 边分边平行 得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。

(2)练一练(P99随堂练习)

练1 如图:四边形ABCD是平行四边形。

(1)求ADC、BCD度数

(2)边AB、BC的度数、长度。

练2 四边形ABCD是平行四边形

(1)它的四条边中哪些 线段可以通过平移相到得到?

(2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。

归 纳:平行四边形的性质:平行四边形的对角线互相平分。

第五环节 评价反思 概括总结(8分钟,学生踊跃谈感受和收获)

活动内容

师生相互交流、反思、总结。

(1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。

(2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?

(3)本节学习到了什么?(知识上、方法上)

考一考:

1、ABCD中,B=60,则A= ,C= ,D= 。

2、ABCD中,A比B大20,则C= 。

3、ABCD中,AB=3,BC=5,则AD= CD= 。

4、ABCD中,周长为40cm,△ABC周长为25,则对角线AC=( )cm。

布置作业

课本习题4。1

A组(学优生)1 、2

B组(中等生)1、2

C组(后三分之一生)1、2

一键复制全文保存为WORD