作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?奇文共欣赏,疑义相如析,如下是漂亮的编辑给大家整理的八年级教案数学上册教案优秀6篇,希望对大家有一些参考价值。
教学目标
1、知识与技能
能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。
2、过程与方法
经历探索一次函数的应用问题,发展抽象思维。
3、情感、态度与价值观
培养变量与对应的思想,形成良好的'函数观点,体会一次函数的应用价值。
重、难点与关键
1、重点:一次函数的应用。
2、难点:一次函数的应用。
3、关键:从数形结合分析思路入手,提升应用思维。
教学方法
采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用。
教学过程
一、范例点击,应用所学
例5、小芳以200米/→←分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。
例6、A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?
解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200—x)吨。B城运往C、D乡的肥料量分别为(240—x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。
由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。
拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?
二、随堂练习,巩固深化
课本P119练习。
三、课堂总结,发展潜能
由学生自我评价本节课的表现。
四、布置作业,专题突破
课本P120习题14.2第9,10,11题。
一、内容和内容解析
1、内容
三角形中相关元素的概念、按边分类及三角形的三边关系。
2、内容解析
三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解。
本节课的教学重点:三角形中的相关概念和三角形三边关系。
本节课的教学难点:三角形的三边关系。
二、目标和目标解析
1、教学目标
(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素。
(2)理解并且灵活应用三角形三边关系。
2、教学目标解析
(1)结合具体图形,识三角形的概念及其基本元素。
(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类。
(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题。
三、教学问题诊断分析
在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神。
四、教学过程设计
1、创设情境,提出问题
问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义。
师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解。
【设计意图】三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解。
2、抽象概括,形成概念
动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义。
师生活动:
三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
【设计意图】让学生体会由抽象到具体的过程,培养学生的语言表述能力。
补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法。
师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡。
【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用。
3、概念辨析,应用巩固
如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来。
1、以AB为一边的三角形有哪些?
2、以∠D为一个内角的三角形有哪些?
3、以E为一个顶点的三角形有哪些?
4、说出ΔBCD的三个角。
师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解。
4、拓广延伸,探究分类
我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法。
师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解。
一、教学目标:
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量。
2、会求一组数据的极差。
二、重点、难点和难点的突破方法:
1、重点:会求一组数据的极差。
2、难点:本节课内容较容易接受,不存在难点。
三、例习题的意图分析:
教材第___页引例的意图。
(1)、主要目的是用来引入极差概念的。
(2)、可以说明极差在统计学家族的角色——反映数据波动范围的量。
(3)、交待了求一组数据极差的方法。
四、课堂引入:
引入问题可以仍然采用教材上的“乌鲁木齐和广州的气温情”为了更加形象直观一些的反映极差的意义,可以画出温度折线图,这样极差之所以用来反映数据波动范围就不言而喻了。
五、例习题分析:
本节课在教材中没有相应的例题,教材第___页习题分析。
问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大。问题2涉及前一个学期统计知识首先应回忆复习已学知识。问题3答案并不,合理即可。
六、随堂练习:
1、一组数据:473、865、368、774、539、474的极差是,一组数据1736、1350、-2114、-1736的极差是。
2、一组数据3、-1、0、2、_的极差是5,且_为自然数,则_= 。
3、下列几个常见统计量中能够反映一组数据波动范围的是( )
A.平均数B.中位数C.众数D.极差
4、一组数据_ 、_ …_的极差是8,则另一组数据2_ +1、2_ +1…,2_ +1的极差是( )
A. 8 B.16 C.9 D.17
答案:1. 497、3850 2. 4 3. D 4.B
七、课后练习:
第三环节:勾股定理的简单应用
内容:
例题 如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处。 大树在折断之前高多少?
(教师板演解题过程)
练习:
1、基础巩固练习:
求下列图形中未知正方形的面积或未知边的长度(口答):
2、生活中的应用:
小明妈妈买了一部29 in(74 cm)的电视机。 小明量了电视机的屏幕后,发现屏幕只有58 cm长和46 cm宽,他觉得一定是售货员搞错了。你同意他的想法吗?你能解释这是为什么吗?
意图:练习第1题是勾股定理的直接运用,意在巩固基础知识。
效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识。运用数学知识解决实际问题是数学教学的重要内容。
第四环节:课堂小结
内容:
教师提问:
1、这一节课我们一起学习了哪些知识和思想方法?
2、对这些内容你有什么体会?与同伴进行交流。
在学生自由发言的基础上,师生共同总结:
1、知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方。如果用 , , 分别表示直角三角形的两直角边和斜边,那么 。
2、方法:(1) 观察—探索—猜想—验证—归纳—应用;
(2)“割、补、拼、接”法。
3、思想:(1) 特殊—一般—特殊;
(2) 数形结合思想。
意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动。
效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识。
第五环节:布置作业
内容:布置作业:1.教科书习题1.1.
2、观察下图,探究图中三角形的三边长是否满足 ?
第11章平面直角坐标系
11。1平面上点的坐标
第1课时平面上点的坐标(一)
教学目标
【知识与技能】
1。知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。
2。理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。已知点的坐标,能在平面直角坐标系中描出点。
3。能在方格纸中建立适当的平面直角坐标系来描述点的位置。
【过程与方法】
1。结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。
2。学会用有序实数对和平面直角坐标系中的点来描述物体的位置。
【情感、态度与价值观】
通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。
重点难点
【重点】
认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。
【难点】
理解坐标系中的坐标与坐标轴上的数字之间的关系。
教学过程
一、创设情境、导入新知
师:如果让你描述自己在班级中的位置,你会怎么说?
生甲:我在第3排第5个座位。
生乙:我在第4行第7列。
师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。
二、合作探究,获取新知
师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体
的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?
生:3排5号。
师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。谁来说说我们应该怎样表示一个物体的位置呢?
生:用一个有序的实数对来表示。
师:对。我们学过实数与数轴上的点是一一对应的,有序实数对是不是也可以和一个点对应起来呢?
生:可以。
教师在黑板上作图:
我们可以在平面内画两条互相垂直、原点重合的数轴。水平的数轴叫做x轴或横轴,取向右为
正方向;竖直的数轴叫做y轴或纵轴,取向上为正方向;两轴交点为原点。这样就构成了平面直角坐标系,这个平面叫做坐标平面。
师:有了平面直角坐标系,平面内的点就可以用一个有序实数对来表示了。现在请大家自己动手画一个平面直角坐标系。
学生操作,教师巡视。教师指正学生易犯的错误。
教师边操作边讲解:
如图,由点P分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是5,我们就说P点的横坐标是3,纵坐标是5,我们把横坐标写在前,纵坐标写在后,(3,5)就是点P的坐标。在x轴上的点,过这点向y轴作垂线,对应的坐标是0,所以它的纵坐标就是0;在y轴上的点,过这点向x轴作垂线,对应的坐标是0,所以它的横坐标就是0;原点的横坐标和纵坐标都是0,即原点的坐标是(0,0)。
教师多媒体出示:
师:如图,请同学们写出A、B、C、D这四点的坐标。
生甲:A点的坐标是(—5,4)。
生乙:B点的坐标是(—3,—2)。
生丙:C点的坐标是(4,0)。
生丁:D点的坐标是(0,—6)。
师:很好!我们已经知道了怎样写出点的坐标,如果已知一点的坐标为(3,—2),怎样在平面直角坐标系中找到这个点呢?
教师边操作边讲解:
在x轴上找出横坐标是3的点,过这一点向x轴作垂线,横坐标是3的点都在这条直线上;在y轴上找出纵坐标是—2的点,过这一点向y轴作垂线,纵坐标是—2的点都在这条直线上;这两条直线交于一点,这一点既满足横坐标为3,又满足纵坐标为—2,所以这就是坐标为(3,—2)的点。下面请同学们在方格纸中建立一个平面直角坐标系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)这几个点。
学生动手作图,教师巡视指导。
三、深入探究,层层推进
师:两个坐标轴把坐标平面划分为四个区域,从x轴正半轴开始,按逆时针方向,把这四个区域分别叫做第一象限、第二象限、第三象限和第四象限。注意:坐标轴不属于任何一个象限。在同一象限内的点,它们的横坐标的符号一样吗?纵坐标的符号一样吗?
生:都一样。
师:对,由作垂线求坐标的过程,我们知道第一象限内的点的横坐标的符号为+,纵坐标的符号也为+。你能说出其他象限内点的坐标的符号吗?
生:能。第二象限内的点的坐标的符号为(—,+),第三象限内的点的坐标的符号为(—,—),第四象限内的点的坐标的符号为(+,—)。
师:很好!我们知道了一点所在的象限,就能知道它的坐标的符号。同样的,我们由点的坐标也能知道它所在的象限。一点的坐标的符号为(—,+),你能判断这点是在哪个象限吗?
生:能,在第二象限。
四、练习新知
师:现在我给出几个点,你们判断一下它们分别在哪个象限。
教师写出四个点的坐标:A(—5,—4),B(3,—1),C(0,4),D(5,0)。
生甲:A点在第三象限。
生乙:B点在第四象限。
生丙:C点不属于任何一个象限,它在y轴上。
生丁:D点不属于任何一个象限,它在x轴上。
师:很好!现在请大家在方格纸上建立一个平面直角坐标系,在上面描出这些点。
学生作图,教师巡视,并予以指导。
五、课堂小结
师:本节课你学到了哪些新的知识?
生:认识了平面直角坐标系,会写出坐标平面内点的坐标,已知坐标能描点,知道了四个象限以及四个象限内点的符号特征。
教师补充完善。
物体位置的说法和表述物体的位置等问题,学生在实际生活中经常遇到,但可能没有想到这些问题与数学的联系。教师在这节课上引导学生去想到建立一个平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力。在教学中我让学生由生活中的实例与坐标的联系感受坐标的实用性,增强了学生学习数学的兴趣。
第2课时平面上点的坐标(二)
教学目标
【知识与技能】
进一步学习和应用平面直角坐标系,认识坐标系中的图形。
【过程与方法】
通过探索平面上的点连接成的图形,形成二维平面图形的概念,发展抽象思维能力。
【情感、态度与价值观】
培养学生的合作交流意识和探索精神,体验通过二维坐标来描述图形顶点,从而描述图形的方法。
重点难点
【重点】
理解平面上的点连接成的图形,计算围成的图形的面积。
【难点】
不规则图形面积的求法。
教学过程
一、创设情境,导入新知
师:上节课我们学习了平面直角坐标系的概念,也学习了已知点的坐标,怎样在平面直角坐标系中把这个点表示出来。下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出A(5,1),B(2,1),C(2,—3)这三个点。
学生作图。
教师边操作边讲解:
二、合作探究,获取新知
师:现在我们把这三个点用线段连接起来,看一下得到的是什么图形?
生甲:三角形。
生乙:直角三角形。
师:你能计算出它的面积吗?
生:能。
教师挑一名学生:你是怎样算的呢?
生:AB的长是5—2=3,BC的长是1—(—3)=4,所以三角形ABC的面积是×3×4=6。
师:很好!
教师边操作边讲解:
大家再描出四个点:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并将它们依次连接起来看看形成的是什么
图形?
学生完成操作后回答:平行四边形。
师:你能计算它的面积吗?
生:能。
教师挑一名学生:你是怎么计算的呢?
生:以BC为底,A到BC的垂线段AE为高,BC的长为4,AE的长为3,平行四边形的面积就是4×3=12。师:很好!刚才是已知点,我们将它们顺次连接形成图形,下面我们来看这样一个连接成的图形:
教师多媒体出示下图:
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
3、难点的突破方法:
首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析
1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
四、课堂引入
采用教材原有的引入问题,设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
所用时间t(分钟)人数
0<t≤10 p="" 4
0<≤ 6
20<t≤20 p="" 14
30<t≤40 p="" 13
40<t≤50 p="" 9
50<t≤60 p="" 4
(1)、第二组数据的组中值是多少?
(2)、求该班学生平均每天做数学作业所用时间
2、某班40名学生身高情况如下图,
请计算该班学生平均身高
答案1.(1)。15. (2)28. 2. 165
六、课后练习:
1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表
部门A B C D E F G
人数1 1 2 4 2 2 5
每人创得利润20 5 2.5 2 1.5 1.5 1.2
该公司每人所创年利润的平均数是多少万元?
2、下表是截至到2002年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?
年龄频数
28≤X<30 4
30≤X<32 3
32≤X<34 8
34≤X<36 7
36≤X<38 9
38≤X<40 11
40≤X<42 2
3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。
答案:1.约2.95万元2.约29岁3.60.54分贝