作为一位优秀的老师,教学是重要的任务之一,借助教学反思我们可以快速提升自己的教学能力,如何把教学反思做到重点突出呢?以下是人见人爱的小编分享的八年级等腰三角形数学教案精选4篇,如果对您有一些参考与帮助,请分享给最好的朋友。
一、教材分析?
1、学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:?
知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。?能力目标:能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力。?
情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。?
2、教学重、难点:?
重点:等腰三角形性质的探索及其应用。?
难点:等腰三角形性质的探索及证明。?
3、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。?
二、学情分析?
刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。?
三、教法分析?
《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。?
四、学法建构?
《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,因此,通过本节教学,我将对学生进行以下学法指导:?
1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。?
2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的能力。?
五、教学模式?
本节课设计的指导思想是全日制义务教育《数学课程标准》及新课程改革的教学理念。?
《数学课程标准》提出了“问题情境——建立模型——解释、运用与拓展”的基本模式,在此模式指导下,本节课我将采用“创设情境——自主探索——合作交流——引导评价——实践应用——反思归纳”的教学模式,力求着眼于学生探究能力和创造性思维能力的培养,
提高学生的自主意识和合作精神。?
六、教学程序和设想?
《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。据此本节课我分以下环节组织教学。? (一)创设情境,观察联想。? 1、多媒体展示电视转播台、房屋人字架,让学生观察找出其中的几何图形?(等腰三角形、四边形、梯形)? 2、两幅图中都有哪种几何图形?(等腰三角形)?
从学生身边的生活和已有知识出发,创设情境,引导学生观察、联想,使学生感受到生活中处处有数学,并学会从数学的角度去观察事物,思考问题,激发学生对学习数学的兴趣和愿望。? (二)动手操作,揭示课题。? 3、什么是等腰三角形?等边三角形?它们有何关系 4、请学生动手作等腰三角形ABC,使AB=AC。裁下这个三角形,再动手折叠,当两腰重合时,找出发现哪些结论。?
5、小组交流发现的结论。(两底重合,折痕是顶角角平分线,底边上的高,底边上的中线。 )?
6、小组代表用语言表达得出的结论。?
7、多媒体演示折叠过程,再现归纳得出的结论。?
8、揭示、板书课题:等腰三角形性质。?让学生温习、重现已学相关知识,为学习新知识做铺垫。?
波利亚曾说过:“学习任何知识的最佳途径都是由自己去发现。”《新课程标准》要求通过实践、思考探索、交流获得知识,所以我在这里力图通过学生动手操作、动眼观察、动口交流表达,使学生充分感知等腰三角形性质。?
(三)独立思考,探究新知。?
9、对于观察得出的结论是否能进行论证,请学生动手试一试。?
放手让学生决定自己的探索方向,鼓励学生选用不同的方法,把期望带给学生,让学生最大限度地发现自己的潜能,使学生形成自己对数学知识的理解和有效的学习策略。?
(四)合作探究,交流创新。?
10、当部分同学找到了问题的突破口,而少数找不到思路的同学也充分感知了困难,尝试了困难后,及时组织学生进行合作探究和交流,并作为合作者参与到学生的交流中。?
组织学生探索、交流,有利于开阔学生的视野,形成一个既有独立思考,又有互相合作,广泛交流的学习氛围,培养学生合作精神。?
(五)引导评价,形成规律。?
11、小组合作交流后,请各小组一名代表上台讲解(给学困生提供上台机会,让他们尝试成功的喜悦)共有三种辅助方法:作∠A的角平分线AD、作 AD⊥BC、作BC边上的中线AD。通过师生、生生的相互补充评价,将探究活动引向深入,强化学生的创新思维训练。
12、等边三角形是特殊等腰三角形,它又具有哪些性质呢
学生探索能得出:①每个角都相等,且都是60°,②每边上的高、中线、角平分线互相重合。?
运用知识迁移在新知识的基础上探索新的未知,把学生的探究兴趣进一步推向高潮,激励学生要敢于迎接挑战,不断追求,锻炼意志。?
13、阅读课本:等腰三角形性质(一)(注意:等边对等角、三线合一的几何语言表达)。培养学生的阅读能力和准确的几何语言表达能力。?
(六)实践应用,巩固提高。?
例:已知房屋的顶角∠ABC=100°,过屋顶的立柱AD⊥BC,屋椽AB=AC,根据图中条件,你能求出哪些角的度数。?
把例题改编成开放题,为学生再一次创设探究情境,进一步培养学生的探究能力和思维的广阔性、灵活性。?达标练习(抢答)? ①填空。设计基础练习,体现素质教育的全员性,通过≤≥抢答训练,更好地激发学生的学习兴趣和求知欲望。?
②△ABC中,AB=AC,D为BC上一点,DE⊥AB,FD⊥BC交AC于F点,∠A=56°,求∠ EDF的度数?通过能力训练题,提高学生分析问题和解决问题的实践能力。?
③应用:某厂车间的人字屋架为等腰三角形,跨度AB=12米,为使屋架更加牢固,需安装中柱CD,你能帮工人师傅确定中柱的位置吗?说明选用的工具和原理。?进一步体现数学来源于实践,又应用于实践,培养学生的应用意识和应用能力。?
(七)反思归纳,形成结构。?
1、引导学生对学习过程进行小结:?
①本节课你有哪些收获?(知识、方法、技能),你认为重点是什么
②所学知识能解决哪些实际问题
③本节课所运用的学习方法对你今后学习有什么启示
2、布置作业:(分层布置)?
这样进行课堂小结,关注学生个体差异,使每一个学生都有成功的学习体验,得到相应的提高和发展,进一步培养学生的主体意识,锻炼学生的归纳总结能力。
教学目标:
1、知识与技能:经历探索——发现——猜想——证明等腰三角形的性质和判定的过程,初步文字命题的证明方法、基本步骤和书写格式。
2、过程与方法:会运用等腰三角形的性质和判定进行有关的计算与简单的证明。
3、情感态度与价值观:逐步学会分析几何证明题的方法及用规范的数学语言表述证明过程。
教学重点:等腰三角形的性质与判定定理的证明
教学难点:证明过程的书写格式,用规范的符号语言描述证明过程
教学过程:
(一)回顾知识
1、什么叫证明?什么叫定理?
2、证明与图形有关的命题,一般步骤有哪些?
3、我们初中数学中,选用了哪些真命题作为基本事实?此外,还有什么被看作是基本事实?
设计说明:师提出问题,回顾旧知识,达到温故而知新的目的,学生以小组为单位讨论交流
(二)创设情境
观察图片
百度图片搜索等腰三角形金字塔的搜索结果
1、什么叫做等腰三角形?(等腰三角形的定义)你能用刻度尺华画一个等腰三角形吗?
2、你能画出它的顶角平分线吗?等腰三角形有哪些性质?
3、上述性质你是怎么得到的?(不妨动手操作做一做)
4、这些性质都是真命题吗?能否用从基本事实出发,对它们进行证明?
(三)探索活动
1、合作与讨论:说明你所画的三角形是等腰三角形。证明:等腰三角形的两个底角相等。
2、思考与讨论:说明你所画的是顶角的平分线。
怎样证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理。
定理:等腰三角形的两个底角相等,(简称:“等边对等角”)
设计说明:引导学生动手操作,让学生真正成为学习的主人,教师是数学学习的引导者,教师引导学生思考探究,逐步尝试运用说理的方式进行说明,教师引导学生,文字语言,
图形语言和几何语言间的互相转换。 已知:如图,在△ABC中,AB=AC 求证:∠B=∠C
定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,(简称:“三线合一”)
4、你能写出上面定理的符号语言吗?
5、总结
教学目标:
知识技能
了解等腰三角形的性质,掌握等腰三角形的性质定理及推论,会用定理及推论解决简单问题.
数学思考
培养学生探究思维、逻辑思维能力,探索引辅助线的规律.
教学重点与难点
重点:理解等腰三角形的性质定理、推论,并能用它们解决简单的问题.
难点:引辅助线证明定理和推论1的应用.
教学过程与流程设计
引导性材料:
1.学生把等腰三角形的两腰叠在一起,发现它的两个底角重合,这说明等腰三角形具有什么性质?(等腰三角形的两个底角相等)(演示叠合过程)
2.教师用等腰三角形纸片演示两腰叠合,再把纸片展开.
提问:你能发现等腰三角形还有什么特性吗?
(引入课题,明确目标)(显示教学目标)
教学设计:
问题1:怎样来证明“等腰三角形的两个底角相等”呢?
已知:如图,△abc中,ab=ac.
求证:∠b=∠c.
(方法1)证明:作顶角的平分线ad.
在△bad和△cad中。
ab=ac (已知)
∠1=∠2 (辅助线作法)
ad=ad (公共边)
∴△bad≌△cad(sas)
∴∠b=∠c(全等三角形的对应角相等)
问题2:上述命题还有哪些证法?
方法2:作底边bc上的高ad. (证明过程由学生口述)
方法3:作底边bc上的中线ad.(证明过程由学生口述)
(演示):等腰三角形的性质定理 等腰三角形的两个底角相等
(简写成“等边对等角”)
观察上述三种方法,思考如下问题:
(1)在等腰△abc中,如果ad是顶角的平分线,那么ad是否平分底边?是否垂直于底边?
(2)在等腰△abc中,如果ad是底边上的高,那么ad是否平分顶角?是否平分底边?
(3)在等腰△abc中,如果ad是底边上的中线,那么ad是否平分顶角?是否垂直于底边?
推论1 等腰三角形顶角的平分线平分底边并且垂直于底边.
(等腰三角形的顶角平分线、底边上中线、底边上的高互相重合.)
练习:填空,在△abc中,
(1)∵ab=ac,ad⊥bc,
∴∠ =∠ , = .
(2)∵ab=ac,ad是中线,
∴ ⊥ ,∠ =∠ .
(3)∵ab=ac,ad是角平分线,
∴ ⊥ , = .
问题2:等边三角形是特殊的等腰三角形,除具有等腰三角形的性质外,还有特殊的性质吗?
推论2:等边三角形的各角都相等,并且每一个角都等于60°.(学生完成证明)
已知:如图,△abc中,ab=ac=bc.
求证:∠a=∠b=∠c=60°
证明:∵ ab=ac,
∴∠b=∠c(等边对等角),
∵ac=bc,
∴∠a=∠b(等边对等角),
∴∠a=∠b=∠c,
今天在县教育局的组织下,在李菊芳科长的领导下,我在永流中学顺利上完示范课《等腰三角形的性质》,并和领导,同仁们进行了评课。在大家的指导下,结合这节课的设计意图,以及学生的学习效果,我个人认为值得以后借鉴的地方有:
(一)突出重点,实现教学目标
《等腰三角形的性质》这节课重点是让学生通过动手翻折等腰三角形纸片得出“等腰三角形的两底角相等”及“三线合一”的性质。设计理念是让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目标。
(二)导课自然,成功引入新课
首先用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。
(三)设置有梯度,学生易于接受
在本节课的问题设置中,特别是巩固练习题的设置,由易到难,由一般到规律先一般顶角70度,到一个角是70度,再到一个角是110度,再总结出顶角的范围,底角的范围,给据学生的认知特点,易于接受。有着良好的效果
这节课,也有不足的地方:
(一)在证明性质时由命题转化几何求证时应多加强已知,求证的书写过程。
(二)上课的节奏有点快。在以后的教学中能多加以改正。美中不足的是性质二的应用本节课安排的例题,习题有点少,在以后的教学中应多补充些例题及习题。