在平平淡淡的学习中,大家最不陌生的就是知识点吧!知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。还在为没有系统的知识点而发愁吗?这次漂亮的小编为您带来了中考数学知识点:实数的性质【优秀5篇】,希望可以启发、帮助到大家。
实数中的几个概念
1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a的相反数是-a;
(2)a和b互为相反数a+b=0
2、倒数:
(1)实数a(a≠0)的倒数是;
(2)a和b互为倒数;
(3)注意0没有倒数
3、绝对值:
(1)一个数a的绝对值有以下三种情况:
(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n次方根
(1)平方根,算术平方根:设a≥0,称叫a的平方根,叫a的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:叫实数a的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
一、数学思维导图学什么:
1、是什么:首先将数学的基本概念记住,理清每一个概念的定义是什么,然后把概念变成自己理解的符号在思维导图中做出图象。
2、怎么做:每个问题都有它的解题方法,思路,可以将这种思路划成步骤写在数学思维导图中。
3、有什么用:用数学思维导图记住知识的条件,然后记住什么时候使用,有什么用。
搞好数学的记忆问题:
数学思维导图是记忆数学最好的方式,主要分为以下三步:
第一步,先用大脑在看过书上的知识之后,通过回忆在脑海中绘制出数学结构图。
第二步,绘制数学思维导图,研究关键词、路线等几个性质,在思维导图软件中将导图绘制出来。
第三步,将数学思维导图和大脑建立连接,就是每次看见这个知识,就在大脑中出这个知识的思维导图,就成为他们之间的链接。
通过数学思维导图学习的模式
1、预习:课前通过数学思维导图了解学习内容是什么,重点是什么,哪些是要进行区分的。
2、听课:在听课的过程中,不断与预习时所做数学思维导图对照,将遗漏的补上,把老师所讲知识内容进行总结。
3、做作业:做之前看下自己上课时候弥补后的思维导图,然后解题目,不会时再去学习所对应的思维导图。
4、复习:重新对自己绘制过的思维导图进行梳理,然后组成更大的思维导图。最好能够把书本、参考书,做过的好的题目和知识都在思维导图上体现出来。
无理数:无限不循环小数叫无理数
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
代数式:
单独一个数或者一个字母也是代数式。
合并同类项:
①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
有理数:
①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:
①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
一、实数的概念及分类
1、实数的分类、正有理数、有理数零有限小数和无限循环小数
负有理数
正无理数
无理数无限不循环小数
负无理数
整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如7,2等;
(2)π有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;3
(3)有特定结构的数,如0、1010010001…等;
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于
零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
4、实数与数轴上点的关系:
每一个无理数都可以用数轴上的一个点表示出来,
数轴上的点有些表示有理数,有些表示无理数,
实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
初中数学线段的性质
(1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
初一学数学的最快方法
课前预习阅读
预习课文时,要准备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述,推理。重点知识可在课本上批、划、圈、点。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。
课后巩固
课后巩固自己的知识点也很重要。课后巩固可以让你的知识点得到一个再记忆的效果,加深记忆数学知识点的效果。
会比较
在学习基础知识(如概念、定义、法则、定理等)时,要运用对比、类比、举反例等思维方式,理解它们的内涵和外延,将类似的、易混淆的基础知识加以区分、如学习棱柱时,我们可以将其和我们已经熟悉的圆柱作对比,总结归纳他们的相同点和不同点,达到加深记忆和理解目的。
写数学学习总结
每周写一次数学学习总结,也是一种提高初中数学学习成绩的好方法。在写初中数学学习总结的时候,我们可以回顾一下本周的数学学习概况,同时可以写一些自己下一周、下一个月的数学学习规划,这样既能对过去的学习有所总结,还能够对未来的数学学习有所计划,两者加起来的话,将会让我们的数学学习思路和目标更加明确。
1、平方根
如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作“根号a”,a叫做被开方数。如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。求一个数a的平方根的运算,叫做开平方。
2、立方根
如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。求一个数的立方根的运算,叫做开立方。
3、实数
无限不循环小数又叫做无理数。有理数和无理数统称实数。一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。