初一数学上册知识点总结(最新7篇)

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。为大家精心整理了初一数学上册知识点总结(最新7篇),如果对您有一些参考与帮助,请分享给最好的朋友。

初一上册数学知识点总结 篇1

同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也叫同类项。

判断几个单项式或项,是否是同类项的两个标准:

①所含字母相同。

②相同字母的次数也相同。

判断同类项时与系数无关,与字母排列的顺序也无关。

合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

合并同类项步骤:

(1)准确的找出同类项。

(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

(3)写出合并后的结果。

合并同类项时注意:

(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0

(2)不要漏掉不能合并的项。

(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

(4)不是同类项千万不能进行合并。

初一上册数学知识点总结 篇2

①求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数(负奇负,负偶正)。正数的任何次幂都是正数,0的任何次幂都是0。新- 课- 标-第 -一- 网

②偶次方等于一个正数的值有两个(两个互为相反数)如:a2=4,a=2或a=-2

注意:|a|+b2=0 得:a=0 且 b=0

强记:a0=1(a≠0);(-1)2=1 ;-12=-1;(-1)3=-1;

-13=-1; (-2)2 =4;-22=-4;(-2)3 =-8;-23=-8

③有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,

从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、

大括号依次进行。注意:12-4×5=12-20(不能把-变+)

④把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a n比原整数位减1。(注意科学计数法与原数的互划。

⑤四舍五入到哪一位就是精确到哪一位,四舍五入时望后多看一位采用四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55. (再如: 2.40万:精确到百位;6.5×104精确到千位,有数量级和科学计数法的要还原成原数,看数量级和科学计数法的最后一个数)。

初一上册数学知识点总结 篇3

1.有理数:

(1)凡能写成 形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类: ① ②

2.数轴:

数轴是规定了原点、正方向、单位长度的一条直线。

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0 ? a+b=0 ? a、b互为相反数。

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;

5.有理数比大小:

(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.

6.互为倒数:

乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数。

7. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数。

8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

9.有理数减法法则:

减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

10 有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

11 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理数除法法则:

除以一个数等于乘以这个数的倒数;注意:零不能做除数, .

13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

15.科学记数法:

把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

16.近似数的精确位:

一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

17.有效数字:

从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

18.混合运算法则:

先乘方,后乘除,最后加减。

七年级上册数学知识点总结 篇4

数轴

⒈数轴的概念

规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不

可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2、数轴上的点与有理数的关系

⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

3、利用数轴表示两数大小

⑴在数轴上数的大小比较,右边的数总比左边的数大;

⑵正数都大于0,负数都小于0,正数大于负数;

⑶两个负数比较,距离原点远的数比距离原点近的数小。

4、数轴上特殊的(小)数

⑴最小的自然数是0,无的自然数;

⑵最小的正整数是1,无的正整数;

⑶的负整数是-1,无最小的负整数

5.a可以表示什么数

⑴a>0表示a是正数;反之,a是正数,则a>0;

⑵a<0表示a是负数;反之,a是负数,则a<0

⑶a=0表示a是0;反之,a是0,,则a=0

初一上册数学知识点总结 篇5

一。线段、射线、直线

※1.正确理解直线、射线、线段的概念以及它们的区别:

名称图形表示方法端点长度

直线直线AB(或BA)

直线l无端点无法度量

射线射线OM1个无法度量

线段线段AB(或BA)

线段l2个可度量长度

※2.直线公理:经过两点有且只有一条直线。

二。比较线段的长短

※1.线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离。

※2.比较线段长短的两种方法:

①圆规截取比较法;

②刻度尺度量比较法。

※3.用刻度尺可以画出线段的中点,线段的和、差、倍、分;

用圆规可以画出线段的和、差、倍。

三。角的度量与表示

※1.角:有公共端点的两条射线组成的图形叫做角;

这个公共端点叫做角的顶点;

这两条射线叫做角的边。

※2.角的表示法:角的符号为“∠”

初一数学上册知识点总结 篇6

单项式与多项式

1、没有加减运算的整式叫做单项式。(数字与字母的积---包括单独的一个数或字母)

2、几个单项式的和,叫做多项式。其中每个单项式叫做多项式的项,不含字母的项叫做常数项。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。

单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

整式

1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。合并同类项:

1).合并同类项的概念:

把多项式中的同类项合并成一项叫做合并同类项。

2).合并同类项的法则:

同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

3).合并同类项步骤:

a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

4).在掌握合并同类项时注意:

a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.

b.不要漏掉不能合并的项。

c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。说明:合并同类项的关键是正确判断同类项。

3、几个整式相加减的一般步骤:

1)列出代数式:用括号把每个整式括起来,再用加减号连接。2)按去括号法则去括号。3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简

(2)代入计算

(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

初一上册数学知识点总结 篇7

(1)多项式:几个单项式的和叫做多项式。

1、多项式中的每一个单项式叫做多项式的项。

2、多项式中不含字母的项叫做常数项。

3、一个多项式有几项,就叫做几项式。

4、多项式的每一项都包括项前面的符号。

5、多项式中次数最高的项的次数,叫做这个多项式的次数。

(2)多项式排列:

①把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母的降幂排列。

②把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母的升幂排列。

(3)单项式与多项式统称整式。(分母含有字母的代数式不是整式)

一键复制全文保存为WORD