概率,又称或然率、机会率、机率(几率)或可能性,它是概率论的基本概念。下面是的小编为您带来的概率的定义是什么意思8篇,希望可以启发、帮助到大家。
之前也说过了,我们就是算在某个区间内,概率为1-α。这个看起来比较易理解。
主要是研究正态总体参数的区间估计,分三类:(公式不好打,所以打开书本164或189页)
已知σ2,估计μ,用正态那个公式,然后用正态的图像可以解出置信区间。
未知σ2,估计μ,用t分布那个公式,然后用t的图像可以解出置信区间。
估计σ2,用开方那个公式,然后用开方的图像可以解出置信区间。
解置信区间需要用到分位数,很直观。
然后整本书要求的内容应该没了吧。好的,我装到现在不容易,下次上课一定要好好听讲,不能上课走神了,所以文中肯定会有我理解错的内容,请指正,谢谢。给自己鼓掌,晚安。 不过,话说你到底什么时候会去图书馆呢?真是伤脑筋o(╯□╰)o
由于本人对数学不大敏感,而且由于时间问题只是看了一遍书而已,没有太深入。文中都是个人理解,若有错误敬请指正和谅解,谢谢。
本文纯属虚构,如有雷同,十分正常。
不少人特别是初学者总感到概率统计难学,不知怎么才能学好,摸不着头绪,比较着急。有人还问:学概率统计有什么窍门?总之,都渴望得到一种好的学习方法,从而学好概率统计。
概率论是研究随机现象的统计规律性的数学学科。由于问题的随机性,从这个意义上讲,也可以说有点难学。这正是不少人害怕概率的原因。但随机现象是有规律可循的,概率论正是研究它的这种规律性的,只要抓住它的规律,概率论也就不难学了。
学习概率统计要抓三个基本:基本概念,基本方法,基本技巧。
基本概念包括基本定义,基本原理和定理。特别要注意如何将实际问题转化成概率模型。这就要求对实际问题的性质,特点和概率论的概率都有充分的了解和认识,这样才能将两者互相联系起来,建立实际问题的数学模型,然后用概率论的方法解决问题。
基本方法包括基本的分析问题的方法,基本公式和基本的计算方法,这是解决问题必不可少的。它建立在对基本概率充分理解的掌握和基础上,什么样的模型用什么样的方法,这是必须搞清的。
基本技巧,实际上就是灵活巧妙地解决问题的某些方法,基本方法运用掌握的好,也能总结出一些基本技巧。基本技巧对提高学习效率是有好处的。
学习概率统计的方法要注意三多:多思,多练,多比。
多思,就是多想,多动脑筋,包括从多方面想。问题多是比较复杂的,只有多思多想,从多方面想,正着想,反着想,反复地想,才能悟出问题的实质。
多练:多练的直接意思就是多做题,做足够数量的题目,特别是不同类型的题目。必须有足够的数量,才能达到对问题的方法,熟能生巧,但多练时也要多思多想,光练不想是不行的。这里要特别提出一题多解的方法,就是一个题目要尽量多想出一些不同的方法来解决。这是一种效率高,效果好的学习方法,对提高能力,开放智力大有好处。多练时还要多总结,及时总结。
多比:多比就是多比较。同类型的问题的比较,不同类型问题的比较,自己的方法和书上的比较,和老师比较,和同学比较,等等,总之,可多方面比较,有比较才有鉴别,有比较才能有提高。这里特别提一下模仿。模仿是一种方法,也是一种能力,特别对学习困难的同学来说模仿是很有必要,很重要的。通过模仿入门,通过模仿掌握方法。当然,光模仿是不行的,要通过模仿学到知识,提高能力,达到能自主解决问题的程度。
三个基本和三多也是密切相连的,要掌握三个基本必须经过三多。基本概念要多思多想才能深刻地认识,也要多练多比才能得到加深和巩固。基本方法,基本技巧经过多练才能掌握,多练过程中也要多想多比才能掌握得更牢固,进而还可能提出更好的方法。
总之,三多是掌握三个基本的好方法。紧紧抓住三个基本,充分利用三多,就一定能把概率统计学好。
1、 在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画?随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画。 此外若对一切实数集合B,知道P(X∈B)。 那么随机试验的任一随机事件的概率也就完全确定了。所以我们只须求出随机变量X的分布P(X∈B)。 就对随机试验进行了全面的刻画。它的研究成了概率论的研究中心课题。故而随机变量的引入是概率论发展历史中的一个重要里程碑。类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会。
2、 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间。而它的取值是不确定的,
随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定的,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布。只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解。又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)。P(B)>0,则A,B独立则一定相容。类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂。
3、 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如F(x)=P(X≤x),EX,DX等按定义都易求得。计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞
f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握。
4、 概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过。因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去。这样往往能“事半功倍”。
1、 由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背景,理解统计方法的直观含义。了解数理统计能解决那些实际问题。对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆。例如估计未知分布的数学期望,就要考虑到① 如何寻求合适的估计量的途径,②如何比较多个估计量的优劣?这样,针对①按不同的统计思想可推出矩估计和极大似然估计,而针对②又可分为无偏估计、有效估计、相合估计,因为不同的估计名称有着不同的含义,一个具体估计量可以满足上面的每一个,也可能不满足。掌握了寻求估计的统计思想,具体寻求估计的步骤往往是“套路子”的,并不困难,然而如果没有从根本上理解,仅死背套路子往往会出现各种错误。
2、 许多同学在学习数理统计过程中往往抱怨公式太多,置信区间,假设检验表格多而且记不住。事实上概括起来只有八个公式需要记忆,而且它们之间有着紧密联系,并不难记,而区间估计和假设检验中只是这八个公式的不同运用而已,关键在于理解区间估计和假设检验的统计意义,在理解基础上灵活运用这八个公式,完全没有必要死记硬背。
“概率论与数理统计”的学习应注重的是概念的理解,而这正是广大学生所疏忽的,在复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚。对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件。如函数y=f(x),当x确定后y有确定的值与之对应。而概率论中随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错。由于基本概念没有搞懂,即使是十分简单的题目也难以得分。从而造成低分多的现象。另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算。因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因。
根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得“事半功倍”的效果。下面我们分别对“概率论”和“数理统计”的学习方法提出一些建议。
答:几何型概率原则上只有理工科考,是数学一考察的对象,最近两年经济类的大纲也加进来了,但还没有考过,数学三、数学四的话虽然明确写在大纲里,还没有考。明年是否可能考呢?几何概率是一个考点,但不是一个考察的重点。我个人认为一是它考的可能性很
小,如果考也是考一个小题,或者是选择题或者是填空题或者在大题里运用一下概率的模式,就是一个事件发生的概率是等于这个事件的度量或者整个样本空间度量的比。这个度量的话指的是面积,一维空间指的是长度,二维空间指的是面积,三维空间指的是体积。所以几何概率指的是长度的比、面积的比和体积的比。重点是面积的比,是二维的情况。
何概率其实很简单,是一个程序化的过程,按这四个步骤你肯定能做出来。第一步把样本空间和让你求概率的事件用几何表示出来。第二步既然是几何概率那就是图形,第二步把几何图形画出来。第三步你就把样本空间和让你求概率的事件所在的几何图形的度量,就是刚才所说的面积或者体积求出来。第三步代公式。以前考过的几何概率的题度量的计算都是用初等的方法做,我推测下次考的话,可能会难一点的。比如说用意项,面积可能用到定积分或者重积分计算,把概率和高等数学联系起来。
关于第二个问题,概率统计怎么复习,今年的考试分配很不正常,明年不会是这样的情况。我想明年数学一(统计)应该考一个八、九分的题是比较适中的。从今年考试中心的样题统计这一块是九分。数学三(统计)应该八分左右,统计这一块大家不要放弃,明年可能会考,分数应该是八、九分的题。至于复习,它的内容占了四分之一的样子。 但是这一部分的题相对于概率题比较固定,做题的方法也比较固定,对考生来说比较好掌握,但这部分考生考得差,可能很多学校没有开这门课,或者开的话讲得比较简单,所以一些同学没有达到考试的水平。其实这部分稍微花一点时间就可以掌握了。主要就是这几块内容一是样本与抽样分布,就是三大分布搞清楚,把他们的结构搞清楚,把统计上的分布搞清楚。
然后是参数估计、矩估计、最大似然估计、区间估计、三种估计方法,三个评价标准,无偏性、有效性、一致性,重点是无偏性的考查,因为它是期望的计算,其次是有效性。一致性一般不会考,考的可能性很小。这三种估计方法重点也是前面两种,矩估计、最大似然估计,区间做了限制,考了很少,历年考试的情况也就是代代公式。
最后一部分是假设检验这部分,这一部分我个人推测明年有可能考一个概念性的小题。 一是了解U检验统计量、T检验统计量、卡方检验统计量,把这三个检验统计量的分布搞清楚。另外假设检验的思想和四个步骤了解一下就可以了。我想这部分考生少花一点时间,统计这个题是没有问题的,重点就是参数估计,就是三种估计方法,三个评价标准,重点在那个地方。
答:我们1997年实行新大纲以后,除了1997年没有考,数学一从1998年到今年每一年都考到数理统计这块内容,也可以更多的情况下通过大题形式考,这里头大家复习时候应该稍微注意一下,数理统计它的公式特别多,但是本质上全部概括起来,三个动态总体的抽样分布,当总体方向是未知的时候,我们这几年考题表面上考数理统计的问题,有相当一部
通学宝典
你好,下面给你介绍一下通过概率论与数理统计的关键学习方法:
1、概率论的很多题都是综合的,有时会用到很多章的知识。如果你从未看过教材,请先通学一遍66个知识点(也就是只学知识点,暂不学知识点下面的练习题。)这样对整体有一个了解后,再回头来仔细练习每一个题。
2、学习概率论时,不同于一般的记忆课程。★★最重要的一点是,要自己动笔在纸上练习★★,如果只是看,可能你觉得看懂了,但实际做题时,还是不知道如何下笔。
3、学习精华版课程时,在看到题目后,不要先去看答案,一定要先想一想这个题自己觉得该如何解答(即使一点都不会,也一定要先想一想,只有这样,当你看了答案后才能印象深刻!),并在纸上写一下自己的解题,然后再看精华版中的答案与详细解析,看懂后再在纸上写一遍解题过程。
★★切记,一定要动笔练习!!!练习时,不能只是随便在纸上写几步,不要怕麻烦,一定要写出完整的解题过程。写的时候一定要有自己的思考,不能像抄书一样。
(★★注意:我们的精华版课程是在总结几十套历年试题基础上,挑选出来的典型题,集中时间练习并弄懂课程中的题,是通过考试的保证。暂时不要去练习其他任何地方的习题,包括教材后的习题也先不要练习。学懂精华版课程后,可以做一下历年试题,来检验一下自己学的效果。)
4、个别知识点感觉太难懂的,确实搞不懂的,可以先略过。学了后面的再回头来学那几个难的,应该就能学懂了。这样可以在保证质量的情况下,提高一些速度。
5、对于记公式,有一种很好的方法,你可以将精华版课程中标为红色的公式集中写在一个卡片上,放在身上,随时拿出来记一下。很多同学上下班的途中,回忆一下公式,记不起来时,就拿出卡片来看一下,效果非常好!!
你一定要严格按我上面说的方法来学习,刚开始可能觉得有点麻烦。但这是之前很多同学通过实践后的成功总结,只要你坚持使用,也一定能考过。