一、选择题(每小题3分,共30分)
1、下列方程中,属于一元一次方程的是()
A. B. C D.
2、已知ax=ay,下列等式中成立的是()
A.x=yB.ax+1=ay-1C.ax=-ayD.3-ax=3-ay
3、一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()
A.40%B.20%C25%D.15%
4、一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是()
A.a米B.(a+60)米C.60a米D.(60+2a)米
5、解方程 时,把分母化为整数,得()。
A、 B、 C、 D、
6、把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是()
A.10B.52C.54D.56
7、一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程。设上山速度为x千米/分钟,则所列方程为()
A.x-1=5(1.5x)B.3x+1=50(1.5x)C.3x-1=(1.5x)D.180x+1=150(1.5x)
8、某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为()
A.约700元B.约773元C.约736元D.约865元
9、下午2点x分,钟面上的时针与分针成110度的角,则有()
A. B. C. D.
10、某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为()
A.15%B.17%C.22%D.80%
二、填空题(每小题3分,共计30分)
11、若x=-9是方程 的解,则m=。
12、若 与 是同类项,则m=,n=。
13、方程 用含x的代数式表示y得y=,用含y的代数式表示x得x=。
14、当x=________时,代数式 与 的值相等。
15、在400米的环形跑道上,男生每分钟跑320米,女生每分钟跑280米,男女生同时同地同向出发,t分钟第2次相遇,则t=。
16、今年母女二人年龄之和是53,已知10年前母亲的年龄是女儿年龄的10倍,如果设10年前女儿的年龄为x,则可将方程。
17、若a,b互为相反数,c,d互为倒数,p的绝对值为2则关于x的方程(a+b)x2+cdx-p2=0的解是。
18、为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树__________棵。
19、有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有50平方米墙面没来得及粉刷;同样时间内5名二级技工粉刷了10间房之外,还多刷了40平方米的墙,已知每名一级技工比二级技工一天多粉刷10平方米的墙面,求每个房间需要粉刷的墙面面积?设每个房间需要粉刷的墙面面积为平方米,则依题意列出的方程是。
20、有一工程需在规定x完成,如果甲单独工作,刚好能够按期完成;如果乙单独工作,就要超过规定日期3天。现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,则依题意列出的方程是。
三、解方程(每小题3分,共计21分)
21.4x-3(20-x)=6x-7(9-x)22.
23、 24.
25、方程 的解与关于x的方程 的解互为倒数,求k的值。
26、先阅读下列解题过程,然后解答问题(1)、(2)
解方程:|x+3|=2
解:①当x+3≥0时,原方程可化为:x+3=2,解得x=-1;②当x+3<0时,原方程可化为:x+3=-2,解得x=-5③所以原方程的解是x=-1,x=-5
(1)解方程:|3x-2|-4=0
(2)探究:当b为何值时,方程|x-2|=b+1①无解;②只有一个解;③有两个解。
四、列方程解应用题(第27题4分,第28-24题每题5分,计39分)
27、一份数学试卷有20道选择题,规定做对一题得5分,不做或做错倒扣1分,结果某学生得分为76分,问他做对了几
28、我市某学校计划向西部山区的学生捐赠3500册图书,实际共捐了4125册。其中,初中学生捐赠了原计划的120%,高中学生捐赠了原计划的115%,问初中学生和高中学生原计划多捐了多少册?
29、汽车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?
30、甲、已两个团体共120人去某风景区旅游。风景区规定超过80人的团体可购买团体票,已知每张团体票比个人票优惠20%,而甲、已两团体人数均不足80人,两团体决定合起来买
团体票,共优惠了480元,则团体票每张多少元?
31、张叔叔用若干元人民币购买了一种年利率为10%的一年期债券,到期后他取出本金的一半用于购物,剩下的一半及所得的利息又全部买了这种一年期债券(利率不变),到期的`得本息和1320元,问张叔叔当初购买这种债券花了多少元?
32、小明想在两种灯中选购一种,其中一种是10瓦的节能灯,售价32元;另一种是40瓦的白炽灯,售价为2元。两种灯的照明效果一样,使用寿命也相同。如果电费是0.5元/每千瓦时。请你根据照明时间的多少选择购买哪一种灯?
33、某公司生产有A、B两种刹车片,现在对同一种高速行驶的赛车实施刹车实验,数据如下表:
1秒后车速 2秒后车速 3秒后车速 4秒后车速 5秒后车速 …… T秒后车速
配A片的车 92米/秒 84米/秒 76米/秒 68米/秒 米/秒 ……
配B片的车 98米/秒 96米/秒 92米/秒 84米/秒 米/秒 ……
根据数据表回答下面的问题:
(1)请根据配A种刹车片的赛车的实验数据规律推算出5秒后的车速并填入相应表格中。
(2)请用所学的知识归纳出两种刹车上的减速规律(t秒后的车速与t的关系)并分别填入表格中的最后一处。
(3)实验时的赛车是从速度为米/秒时开始减速的。
(4)请通过计算说明:配A种刹车片的赛车从刹车开始经过多少秒后才能停稳?
34、有两个班的小学生要从学校到7千米外的少年宫参加活动,但只有一辆车接送。第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫,最终两个班的学生同时到达少年宫。已知学生步行速度为每小时4公里,载学生时车速每小时40公里,空车是50公里/小时,问每个班的学生步行了多少千米?
一、选择题(共11小题)
1、若代数式x+3的值为2,则x等于( )
A.1 B.﹣1 C.5 D.﹣5
2、一元一次方程2x=4的解是( )
A.x=1 B.x=2 C.x=3 D.x=4
3、方程2x﹣1=3的解是( )
A.﹣1 B.﹣2 C.1 D.2
4、方程3x+2(1﹣x)=4的解是( )
A.x= B.x= C.x=2 D.x=1
5、若代数式4x﹣5与 的值相等,则x的值是( )
A.1 B. C. D.2
6、方程2x﹣1=3x+2的解为( )
A.x=1 B.x=﹣1 C.x=3 D.x=﹣3
7、方程3x﹣1=2的解是( )
A.x=1 B.x=﹣1 C.x=﹣ D.x=
8、方程x+2=1的解是( )
A.3 B.﹣3 C.1 D.﹣1
9、若代数式x+4的值是2,则x等于( )
A.2 B.﹣2 C.6 D.﹣6
10、方程2x﹣1=3的解是( )
A.﹣1 B. C.1 D.2
11、一元一次方程4x+1=0的解是( )
A. B.﹣ C.4 D.﹣4
二、填空题(共5小题)
12、方程2x﹣1=0的解是x= 。
13、方程3x+1=7的根是 。
14、方程x+2=7的解为 。
15、设a,b,c,d为实数,现规定一种新的运算 =ad﹣bc,则满足等式 =1的x的值为 。
16、方程x+5= (x+3)的解是 。
三、解答题(共4小题)
17、解方程:5x=3(x﹣4)
18、解方程:3(x+4)=x.
19、解方程: 。
20、方程x+1=0的解是 。
【课前复习】
1在等式3y—6=7的两边同时( ),得到3y=13。
2方程—5x+3=8的根是( )。
3x的5倍比x的2倍大12可列方程为( )。
4写一个以x=—2为解的方程( ) 。
5如果x=—1是方程2x—3m=4的根,则m的值是( ) 。
6如果方程 是一元一次方程,则( ) 。
⑴ 方程:含有未知数的( )叫做方程;使方程左右两边值相等的( ),叫做方程的解;求方程解的( )叫做解方程。 方程的解与解方程不同。
⑵ 一元一次方程:在整式方程中,只含有)●(( )个未知数,并且未知数的次数是( ),系数不等于0的方程叫做一元一次方程;它的一般形式为 (a不等于0)。
7 解一元一次方程的步骤:
①去( ) ;②去( );③移( );④合并( );⑤系数化为1。
(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意移项要变号。
吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:
信息一:这三个班的捐款总金额是7700元;
信息二:(2)班的捐款金额比(3)班的捐款金额多300元;
信息三:(1)班学生平均每人捐款的金额大于48元,小于51元。
请根据以上信息,帮助吴老师解决下列问题:
(1)求出(2)班与(3)班的捐款金额各是多少元;
(2)求出(1)班的学生人数。
【中考练习】
1若5x—5的值与2x—9的值互为相反数,则x=_____。
2 某工厂第一季度生产甲、乙两种机器共480台。改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10 % ,乙种机器产量要比第一季度增产20 %。该厂第一季度生产甲、乙两种机器各多少台?
3苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:
①每亩水面的年租金为500元,水面需按整数亩出租;
②每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;
③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;
④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;
(1) 若租用水面 亩,则年租金共需__________元;
(2) 水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益—成本);
(3) 李大爷现在奖金25000元,他准备再向银行贷不超过25000元的款,用于蟹虾混合养殖。已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,并向银行贷款多少元,可使年利润超过35000元?
一、填空题。(每小题3分,共24分)
1、已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2、若x=-1是方程2x-3a=7的解,则a=_______.
3、当x=______时,代数式 x-1和 的值互为相反数。
4、已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
5、在方程4x+3y=1中,用x的代数式表示y,则y=________.
6、某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元。
7、已知三个连续的偶数的和为60,则这三个数是________.
8、一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成。
二、选择题。(每小题3分,共30分)
9、方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( )。
A.0 B.1 C.-2 D.-
10、方程│3x│=18的解的情况是( )。
A.有一个解是6 B.有两个解,是6
C.无解 D.有无数个解
11、若方程2ax-3=5x+b无解,则a,b应满足( )。
A.a ,b3 B.a= ,b=-3
C.a ,b=-3 D.a= ,b-3
12、把方程 的分母化为整数后的方程是( )。
13、在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( )。
A.10分 B.15分 C.20分 D.30分
14、某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的。销售额比一月份的销售额( )。
A.增加10% B.减少10% C.不增也不减 D.减少1%
15、在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米。
A.1 B.5 C.3 D.4
16、已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( )。
A.从甲组调12人去乙组 B.从乙组调4人去甲组
C.从乙组调12人去甲组
D.从甲组调12人去乙组,或从乙组调4人去甲组
17、足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场。
A.3 B.4 C.5 D.6
18、如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )
A.3个 B.4个 C.5个 D.6个
三、解答题。(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分
20、解方程: (x-1)- (3x+2)= - (x-1)。
21、如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明。已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片。
22、一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数。
23、某公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上
票 价 5元 4.5元 4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元。
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)
24、据了解,火车票价按 的方法来确定。已知A站至H站总里程数为1500千米,全程参考价为180元。下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站
里程数(米) 1500 1130 910 622 402 219 72 0
例如:要确定从B站至E站火车票价,其票价为 =87.3687(元)。
(1)求A站至F站的火车票价(结果精确到1元)。
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:我快到站了吗?乘务员看到王大妈手中的票价是66元,马上说下一站就到了。请问王大妈是在哪一站下的车(要求写出解答过程)。
一元一次方程练习题及答案:
一、1.3
2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)
3、 (点拨:解方程 x-1=- ,得x= )
4、 x+3x=2x-6 5.y= - x
6.525 (点拨:设标价为x元,则 =5%,解得x=525元)
7.18,20,22
8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]
二、9.D
10.B (点拨:用分类讨论法:
当x0时,3x=18,x=6
当x0时,-3=18,x=-6
故本题应选B)
11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+30,b-3,故本题应选D.)
12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)
13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)
14.D
15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)
16.D 17.C
18.A (点拨:根据等式的性质2)
三、
20、解:去分母,得
15(x-1)-8(3x+2)=2-30(x-1)
21x=63
x=3
21、解:设卡片的长度为x厘米,根据图意和题意,得
5x=3(x+10),解得x=15
所以需配正方形图片的边长为15-10=5(厘米)
答:需要配边长为5厘米的正方形图片。
22、解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故
100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171
解得x=3
答:原三位数是437.
23、解:(1)∵103100
每张门票按4元收费的总票额为1034=412(元)
可节省486-412=74(元)
(2)∵甲、乙两班共103人,甲班人数乙班人数
甲班多于50人,乙班有两种情形:
①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得
5x+4.5(103-x)=486
解得x=45,103-45=58(人)
即甲班有58人,乙班有45人。
②若乙班超过50人,设乙班x人,则甲班有(103-x)人,
根据题意,得
4.5x+4.5(103-x)=486
∵此等式不成立,这种情况不存在。
故甲班为58人,乙班为45人。
24、解:(1)由已知可得 =0.12
A站至H站的实际里程数为1500-219=1281(千米)
所以A站至F站的火车票价为0.121281=153.72154(元)
(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66
解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车。
(注:一元一次方程练习题及答案,仅供练习和参考,要想熟练掌握一元一次方程的做题方法,还需同学们勤加练习和思考!祝同学们学习成绩越来越棒,加油!)
一、填空题
(1)一元一次方程化成标准形式为________,它的最简形式是________。
(2)已知方程2(2x+1)=3(x+2)-(x+6)去括号得________。
(3)方程,去分母后得到的方程是________。
(4)把方程的分母化为整数结果是_______。
(5)若是一元一次方程,则n=________。
二、选择题
(1)下列两个方程有相同解的是()。
(A)方程5x+3=6与方程2x=4
(B)方程3x=x+1与方程2x=4x-1
(C)方程与方程
(D)方程6x-3(5x-2)=5与方程6x-15x=3
(2)将3(x-1)-2(x-3)=5(1-x)去括号得()。
(A)3x-1-2x-3=5-x
(B)3x-1-2x+3=5-x
(C)3x-3-2x-6=5-5x
(D)3x-3-2x+6=5-5x
(3)下列说法中正确的是()。
(A)3x=5+2可以由3x+1=5移项得到。
(B)1-x=2x-1移项后得1-1=2x+x。
(C)由5x=15得这种变形也叫移项。
(D)1-7x=2-6x移项后得1-2=7x-6x。
三、解下列方程
(1)10x=-5。
(2)-0.1x=10。
(3)4-3x=16。
(4)5y-9=7y-13。
(5)3x-3=6x+6。
(二)反馈矫正检测
一、选择题
(1)方程的'解是()。
(A)(B)
(C)(D)
(2)方程的解为()。
(A)(B)
(C)(D)
(3)若关于x的方程的解为x=3,则a的值为()。
(A)2(B)22
(C)10(D)-2
二、解答题
(1)解下列方程
(2)已知代数式-x-6的值与互为倒数,求x。
(3)a为何值时,关于x的方程3x+a=0的解比方程的解大2?
(4)若x=-8是方程的解,求代数式的值。
答案与提示
(一)
一、(1),;
(2)4x+2=3x+6-x-6;
(3)10x-12x+6=45x+60-120;
(4);
(5)n=2;
二、(1)B;(2)D;(3)D。
三、(1);(2)x=-100;(3)x=-4;(4);(5)x=6;
(6)y=2;(7)x=-3;(8);(9);
(二)
一、(1)C(2)D(3)C
二、(1)①y=1;②;③k=-5;④x=6
(2)x=-13
(3)a=12