数学透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察而产生。下面是整理的初中数学的知识点总结归纳优秀5篇,在大家参照的同时,也可以分享一下给您最好的朋友。
初中数学知识点总结:中位线
知识要点:梯形的中位线平行于两底,并且等于两底和的一半。
1.中位线概念
(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。
(2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。
注意:
(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。
(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。
(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。
2.中位线定理
(1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半。
三角形两边中点的连线(中位线)平行于第BC边,且等于第三边的一半。
知识要领总结:三角形的中位线所构成的小三角形(中点三角形)面积是原三角形面积的四分之一。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通〖〗常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。
知识要领:非负数,顾名思义,就是不是负数的数,也就是零和正实数。例如:0、3.4、9/10、π(圆周率)。
非负数
非负数大于或等于0。
非负数中含有有理数和无理数。
非负数的和或积仍是非负数。
非负数的和为零,则每个非负数必等于零。
非负数的积为零,则至少有一个非负数为零。
非负数的绝对值等于本身。
常见的非负数
实数的绝对值、实数的偶次幂、算术根等都是常见的非负数。
常见表现形式
非负数的准确数学表达是a≥0、│a│、a^2n是常见的非负数。
知识归纳:任何一个非负数乘以-1都会得到一个非正数。
一、基本知识
㈠、数与代数
A、数与式:
1、有理数
有理数:
①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:
①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数
无理数:无限不循环小数叫无理数。
平方根:
① 如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
② 如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③ 一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
② 实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:
①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:
①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN = A(M+N)
(AM)N = AMN
(A/B)N = AN/BN除法一样。
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:
① 单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:
①同分母的分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:
①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
B、方程与不等式
1、方程与方程组
一元一次方程:
①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高次数为2的方程
1)一元二次方程的二次函数的关系
已经学过二次函数(即抛物线)了,对它也有很深的了解,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了。
2)一元二次方程的解法
二次函数有顶点式(-b/2a,(4ac-b2)/4a),这个顶点公式一定要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以它也有自己的一个解法,利用它可以求出所有的一元一次方程的解。
(1)配方法
利用配方,使方程变为完全平方公式,再用直接开平方法去求出解。
配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解。
分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。
(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a公式法。
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。
4)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a
也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在解题中很常用。
5)一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:
I当△>0时,一元二次方程有2个不相等的实数根;
II当△=0时,一元二次方程有2个相同的实数根;
III当△<0时,一元二次方程没有实数根;
2、不等式与不等式组
不等式:
① 用符号>,=,<号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:
①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向:
在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B, A+C>B+C
在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A_C>B_C(C>0)。
在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A_C
如果不等式乘以0,那么不等号改为等号。
所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
3、函数
变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。②当B=0时,称Y是X的正比例函数。
一次函数的图象:
①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
② 正比例函数Y=KX的图象是经过原点的一条直线。
③ 在一次函数中,当K<0,B
④ 当K>0时,Y值随X值的增大而增大,当X<0时,Y的值随X值的增大而减少。
㈡ 空间与图形
A、图形的认识
1、点,线,面
点,线,面:
② 图形是由点,线,面构成的。
② 面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:
①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:
①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。
2、角
线:
①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。射线只有一个端点。
②将线段的两端无限延长就形成了直线。直线没有端点。
④经过两点有且只有一条直线。
比较长短:
①两点之间的所有连线中,线段最短。
②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:
①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。
角的比较:
①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。
③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:
①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:
①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后,一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等。
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上。
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点。
性质定理:角平分线上的点到该角两边的距离相等。
判定定理:到角的两边距离相等的点在该角的角平分线上。
正方形:一组邻边相等的矩形是正方形。
性质定理:正方形具有平行四边形、菱形、矩形的一切性质。
判定定理:1、对角线相等的菱形; 2、邻边相等的矩形。
3、相交线与平行线
角:
①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。
②同角或等角的余角/补角相等。
③对顶角相等。
④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。
4、三角形
①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
③三角形任意两边之和大于第三边。三角形任意两边之差小于第三边。
④三角形三个内角的和等于180度。
⑤三角形分锐角三角形/直角三角形/钝角三角形。
⑤ 直角三角形的两个锐角互余。
⑥ 三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。
⑧三角形的三条角平分线交于一点,三条中线交于一点。
⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。
⑩三角形的三条高所在的直线交于一点。
图形的全等:全等图形的形状和大小都相同。两个能够重合的图形叫全等图形。
全等三角形:
①全等三角形的对应边/角相等。
②条件:SSS、AAS、ASA、SAS、HL。
勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。
5、四边形
平行四边形的性质:
①两组对边分别平行的四边形叫做平行四边形。
③ 平行四边形不相邻的两个顶点连成的线段叫他的对角线。
④ 平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
平行四边形的判定条件:两条对角线互相平分的四边形、一组对边平行且相等的四边形、两组对边分别相等的四边形/定义。
菱形:
①一组邻边相等的平行四边形是菱形。
②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:
①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。⑤一组邻边相等的矩形是正方形。
梯形:
①一组对边平行而另一组对边不平行的四边形叫梯形。
②两条腰相等的梯形叫等腰梯形。
③一条腰和底垂直的梯形叫做直角梯形。
④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。
多边形:
①N边形的内角和等于(N-2)180度。
②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)
平面图形的密铺:三角形,四边形和正六边形可以密铺。
中心对称图形:
①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。
②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
B、图形与变换:
1、图形的轴对称
轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
轴对称图形:
①角的平分线上的点到这个角的两边的距离相等。
②线段垂直平分线上的点到这条线段两个端点的距离相等。
③等腰三角形的“三线合一”。
轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。
2、图形的平移和旋转
平移:
①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。
②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
旋转:
①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
3、图形的相似
如:①A/B=C/D,那么AD=BC,反之亦然。②A/B=C/D,那么A土B/B=C土D/D。③A/B=C/D=……=M/N,那么A+C+…+M/B+D+…N=A/B。
黄金分割:点C把线段AB分成两条线段AC与BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比例【(根号5-1)/2】。
相似:
①各角对应相等,各边对应成比例的两个多边形叫做相似多边形。
②相似多边形对应边的比叫做相似比。
相似三角形:
①三角对应相等,三边对应成比例的两个三角形叫做相似三角形。
②条件:AAA、SSS、SAS。
相似多边形的性质:
①相似三角形对应高,对应角平分线,对应中线的比都等于相似比。
②相似多边形的周长比等于相似比,面积比等于相似比的平方。
图形的放大与缩小:
① 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
② 位似图形上任意一对对应点到位似中心的距离之比等于位似比。
C、图形的坐标
平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴与Y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。他们分4个象限。XA,YB记作(A,B)。
D、证明
定义与命题:
①对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。
②对事情进行判断的句子叫做命题(分真命题与假命题)。
③每个命题是由条件和结论两部分组成。
④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。
公理:
①公认的真命题叫做公理。
②其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。
③同位角相等,两直线平行,反之亦然;SAS、ASA、SSS,反之亦然;同旁内角互补,两直线平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角。
④由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。
㈢ 统计与概率
1、统计
科学记数法:一个大于10的数可以表示成A_10N的形式,其中1小于等于A小于10,N是正整数。
扇形统计图:
①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。
②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。
各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
近似数字和有效数字:
①测量的结果都是近似的。
③ 利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。
④ 对于一个近似数,从左边第一个不为0的数字起,到精确到的数位为止,所有的数字都叫做这个数的有效数字。
平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X(X上边一横)。
加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
中位数与众数:
①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
②一组数据中出现次数最大的那个数据叫做这个组数据的众数。
③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。
调查:
①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。
②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。
③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。
频数与频率:
①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。
②当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。
2、概率
可能性:
①有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。
②有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。
③一般来说,不确定事件发生的可能性是有大小的。
概率:
①人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。
②游戏对双方公平是指双方获胜的可能性相同。
③必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0
二、基本定理
1、过两点有且只有一条直线 。
2、两点之间线段最短。
3、同角或等角的补角相等。
4、同角或等角的余角相等。
5、过一点有且只有一条直线和已知直线垂直 。
6、直线外一点与直线上各点连接的所有线段中,垂线段最短。
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行。
8、如果两条直线都和第三条直线平行,这两条直线也互相平行。
9、同位角相等,两直线平行。
10、内错角相等,两直线平行。
11、同旁内角互补,两直线平行。
12、两直线平行,同位角相等 。
13、两直线平行,内错角相等。
14、两直线平行,同旁内角互补。
15、定理三角形两边的和大于第三边 。
16、推论三角形两边的差小于第三边。
17、三角形内角和定理三角形三个内角的和等于180°。
18、推论1直角三角形的两个锐角互余。
19、推论2三角形的一个外角等于和它不相邻的两个内角的和 。
20、推论3三角形的一个外角大于任何一个和它不相邻的内角。
21、全等三角形的对应边、对应角相等。
22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。
23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。
24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
25、边边边公理(SSS)有三边对应相等的两个三角形全等 。
26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 。
27、定理1在角的平分线上的点到这个角的两边的距离相等。
28、定理2到一个角的两边的距离相同的点,在这个角的平分线上 。
29、角的平分线是到角的两边距离相等的所有点的集合 。
30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 。
31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边 。
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。
33、推论3等边三角形的各角都相等,并且每一个角都等于60°。
34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 。
35、推论1三个角都相等的三角形是等边三角形。
36、推论2有一个角等于60°的等腰三角形是等边三角形 。
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 。
38、直角三角形斜边上的中线等于斜边上的一半。
39、定理线段垂直平分线上的点和这条线段两个端点的距离相等。
40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。
42、定理1关于某条直线对称的两个图形是全等形。
43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 。
44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 。
45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2。
47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形。
48、定理四边形的内角和等于360°。
49、四边形的外角和等于360°。
50、多边形内角和定理n边形的内角的和等于(n-2)×180°。
51、推论任意多边的外角和等于360°。
52、平行四边形性质定理1平行四边形的对角相等。
53、平行四边形性质定理2平行四边形的对边相等 。
54、推论夹在两条平行线间的平行线段相等。
55、平行四边形性质定理3平行四边形的对角线互相平分。
56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形。
57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形。
58、平行四边形判定定理3对角线互相平分的四边形是平行四边形。
59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形。
60、矩形性质定理1矩形的四个角都是直角。
61、矩形性质定理2矩形的对角线相等。
62、矩形判定定理1有三个角是直角的四边形是矩形。
63、矩形判定定理2对角线相等的平行四边形是矩形。
64、菱形性质定理1菱形的四条边都相等。
65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角。
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2。
67、菱形判定定理1四边都相等的四边形是菱形。
68、菱形判定定理2对角线互相垂直的平行四边形是菱形。
69、正方形性质定理1正方形的四个角都是直角,四条边都相等。
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
71、定理1关于中心对称的两个图形是全等的
72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
74、等腰梯形性质定理等腰梯形在同一底上的两个角相等。
75、等腰梯形的两条对角线相等。
76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形。
77、对角线相等的梯形是等腰梯形。
78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰。
80、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边。
81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半。
82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h。
83、(1)比例的基本性质:
如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84、(2)合比性质:
如果a/b=c/d,那么(a±b)/b=(c±d)/d。
85、(3)等比性质:
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+……+m)/(b+d+……+n)=a/b
86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。
87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 。
88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。
90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 。
91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)。
94、判定定理3三边对应成比例,两三角形相似(SSS)。
95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比。
97、性质定理2相似三角形周长的比等于相似比 。
98、性质定理3相似三角形面积的比等于相似比的平方。
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。
101、圆是定点的距离等于定长的点的集合。
102、圆的内部可以看作是圆心的距离小于半径的点的集合。
103、圆的外部可以看作是圆心的距离大于半径的点的集合。
104、同圆或等圆的半径相等。
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 。
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线。
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线。
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线。
109、定理不在同一直线上的三点确定一个圆
110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧。
111、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
112、推论2圆的两条平行弦所夹的弧相等。
113、圆是以圆心为对称中心的中心对称图形。
114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
116、定理一条弧所对的圆周角等于它所对的圆心角的一半。
117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
121、
①直线L和⊙O相交d﹤r。
②直线L和⊙O相切d=r。
③直线L和⊙O相离d﹥r。
122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
123、切线的性质定理圆的切线垂直于经过切点的半径。
124、推论1经过圆心且垂直于切线的直线必经过切点。
125、推论2经过切点且垂直于切线的直线必经过圆心。
126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角。
127、圆的外切四边形的两组对边的和相等。
128、弦切角定理弦切角等于它所夹的弧对的圆周角。
129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。
131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 。
134、如果两个圆相切,那么切点一定在连心线上。
135、
①两圆外离d﹥R+r。
②两圆外切d=R+r。
④ 两圆相交R-r﹤d﹤R+r(R﹥r)。
⑤ 两圆内切d=R-r(R﹥r)。
⑤两圆内含d﹤R-r(R﹥r)。
136、定理相交两圆的连心线垂直平分两圆的公共弦。
137、定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形。
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
139、正n边形的每个内角都等于(n-2)×180°/n。
140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长。
142、正三角形面积√3a/4 a表示边长。
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。
144、弧长计算公式:L=n兀R/180。
145、扇形面积公式:S扇形=n兀R^2/360=LR/2
146、内公切线长=d-(R-r)外公切线长=d-(R+r)
首先你要有一个好的态度,有些人学习数学,可能有的阶段会喜欢学习,但是某一阶段,对数学就没有什么兴趣了,可能每个人都会有这样一个阶段,但是如果发现自己不喜欢学习数学了,一定要克制自己,在学习数学上,保持一个良好的学习态度,这是你学好数学的第一步。
充分的利用好上课的时间,上课时间你所掌握的知识,会比你在课下学很长时间都有用,所以珍惜课堂老师所讲的内容,老师的某些话对我们以后做数学题都很有帮助,如果你上课走神,这些话没有听到,你在做题的时候,可能会走很多弯路,做题的效率也会降低,一旦有这样的情况,可能你就会不喜欢数学了。
学习最重要的是思考,会思考数学才能学好,数学中的题都是需要我们去举一反三的,没做一道题,都要思考一下,围绕着这道题的知识点,还会有什么样的题型出现,哪怕是遇到不会的题,也要勤加的思考,如果你把知识点自认为学习透彻,那么就用做题检验吧,数学中多做题是必须的,成绩都是用题堆积出来的,很少会有人不做题数学成绩很高的。
定义
对应角相等,对应边成比例的两个三角形叫做相似三角形
比值与比的概念
比值是一个具体的数字如:AB/EF=2
而比不是一个具体的数字如:AB/EF=2:1判定方法
证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
方法一(预备定理)
平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)
方法二
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
方法三
如果两个三角形的两组对应边成比例,并且相应的夹角相等,
那么这两个三角形相似
方法四
如果两个三角形的三组对应边成比例,那么这两个三角形相似
方法五(定义)
对应角相等,对应边成比例的两个三角形叫做相似三角形
三个基本型
Z型A型反A型
方法六
两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。一定相似的三角形
1、两个全等的三角形
(全等三角形是特殊的相似三角形,相似比为1:1)
2、两个等腰三角形
(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)
3、两个等边三角形
(两个等边三角形,三角都是60度,且边边相等,所以相似)
4、直角三角形中由斜边的高形成的三个三角形(母子三角形)
图形的学习需要大家对于知识的详细了解和渗透,而不是一带而过。